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Abstract
We consider a conjecture that identifies two types of base point free divisors on M0,n.
The first arises from Gromov-Witten theory of a Grassmannian. The second comes
from first Chern classes of vector bundles associated with simple Lie algebras in
type A. Here we reduce this conjecture on M0,n to the same statement for n = 4. A
reinterpretation leads to a proof of the conjecture on M0,n for a large class, and we
give sufficient conditions for the non-vanishing of these divisors.

Keywords Moduli of curves · Coinvariants and conformal blocks ·
Affine Lie algebras · Gromov-Witten invariants · Enumerative problems ·
Schubert calculus · Grassmannians

Mathematic Subject Classification (2010) 14H10 (primary) · 81R10 · 81T40 ·
14N35 · 14N10 · 14C20

1 Introduction

The moduli space Mg,n of n-pointed stable curves of genus g is a fundamental object
that gives insight into smooth curves and their degenerations. A projective variety
such as Mg,n can be better understood by investigating its base point free divisors,
which give rise to morphisms. Moduli spaces of curves for different g and n are
connected through tautological clutching and projection morphisms which impart a
rich combinatorial structure. Cycles on Mg,n reflect this, and often are governed by
recursions, and amenable to inductive arguments. Consequently, many questions can
be reduced to moduli of curves of smaller genus and fewer marked points.

We study two families of base point free divisors on the smooth projective variety
M0,n. The first are obtained from the Gromov-Witten theory of Grassmannians, and

� A. Gibney
angela.gibney@gmail.com

Extended author information available on the last page of the article.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00031-022-09752-6&domain=pdf
http://orcid.org/0000-0003-0208-4140
mailto: angela.gibney@gmail.com


L. Chen et al.

the second are first Chern classes of globally generated vector bundles defined by rep-
resentations of a simple Lie algebra in type A, so-called conformal blocks divisors.
While quite different, in some cases they are given by the same data and believed to
be numerically equivalent (see the GW ≡ CB Conjecture). The identification of char-
acteristic classes of vector bundles with classes of geometric loci is interesting as it
can lead to valuable information about associated maps and cones of divisors.

We prove two main results. In Theorem A, we show the GW ≡ CB Conjecture on
M0,n can be reduced to the case n = 4 by using the fact that both types of classes
satisfy a factorization property with respect to pullback along tautological maps. In
Theorem B, we show the GW ≡ CB Conjecture for divisors satisfying what we call
the column condition (see Definition 1.1). As an application, in Proposition 6.2, we
give sufficient criteria for the non-vanishing of the GW and CB divisors, and in
particular, conditions that guarantee their associated maps are nonconstant.

We next state the GW ≡ CB Conjecture, and our results in more detail. We also
describe our methods and approach, which are varied, drawing from a variety of
techniques and facts from Gromov-Witten theory and the theory of conformal blocks.

Given a collection of partitions λ• = (λ1, . . . , λn) satisfying
∑

i |λi | = (r +
1)(l + 1), we obtain a GW divisor I

1,Grr,r+l

1,λ• on M0,n (see Section 2.2). The same data
determines n simple modules over the Lie algebra slr+1 and defines a vector bundle
of coinvariants V(slr+1, λ

•, l) on Mg,n [40], which is globally generated on M0,n

[16]. The condition
∑

i |λi | = (r + 1)(l + 1) means V(slr+1, λ
•, l) is critical level

(see Section 2.5).
Such GW divisors and critical level CB bundles are believed to be related:

The GW ≡ CB Conjecture [8, Question 3.3] Let λ• = (λ1, . . . , λn) be partitions
corresponding to Schubert classes in Grr,r+l such that

∑
i |λi | = (r +1)(l +1). Then

the GW divisor I
1,Grr,r+l

1,λ• on M0,n is numerically equivalent to the first Chern class of
the critical level CB bundle V(slr+1, λ

•, l).

The GW ≡ CB Conjecture was proved for the case l = 1 in [8, Thm 3.1]. Note
that Remark 3.2 and Question 3.3 of [8] referred to the Grassmannians Gr1,r+1
and Grl,r+l , respectively, but instead correspond to the Grassmannians Grr,r+1 and
Grr,r+l in our notation.

Our first main result is to reduce the GW ≡ CB Conjecture to the n = 4 case.

Theorem A GW ≡ CB on M0,4 implies that GW ≡ CB on M0,n, for all n ≥ 4.

On M0,4 ∼= P
1, the first Chern class is the degree of the bundle. We verify the GW

≡ CB Conjecture for a class of divisors defined by partitions satisfying the following:

Definition 1.1 Let #λ be the number of non-zero rows of a partition λ or, equiva-
lently, the height of the first column, so #λ = λT

1 where λT is the transpose to λ.
We say that λ• satisfies the column condition if

∑n
i=1 |λi | = (r + 1)(l + 1), and∑n

i=1 #λi ≤ 2(r + 1).
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Theorem B GW ≡ CB holds on M0,n if λ• satisfies the column condition.

We reduce Theorem B to the n = 4 case in Proposition 3.2, and then establish the
n = 4 case in Proposition 5.1. If

∑n
i=1 #λi < 2(r + 1), both the GW and CB classes

are trivial. In Section 6 we give an infinite family of nontrivial examples satisfying
Theorem B. In addition, with ConfBlocks, a package for Macaulay2, we check the
GW ≡ CB Conjecture holds for small values of r and l by verifying it on M0,4
(Proposition 6.1).

Both critical level CB bundles and GW divisors satisfy symmetries: By

[10, Prop 1.6], c1(V(slr+1, λ
•, l)) ≡ c1(V(sll+1, (λ

T )•, r)); similarly, I
1,Grr,r+l

1,λ• ≡
I

1,Grl,r+l

1,(λT )• , from isomorphisms Grr,r+l
∼= Grl,r+l . Thus, for triples (λ•, r, l) for which

the GW ≡ CB Conjecture holds,

I
1,Grr,r+l

1,λ• ≡ c1(V(slr+1, λ
•, l)) ≡ I

1,Grl,r+l

1,(λT )• ≡ c1(V(sll+1, (λ
T )•, r)). (1)

Therefore, Theorem B also proves the conjecture when an analogous row condition
is satisfied.

To show that I
1,Grr,r+l

1,λ• and c1(V(slr+1, λ
•, l)) are numerically equivalent, it suf-

fices to show they intersect all F -curves, which span H2(M0,n), in the same degree.
Formulas for these intersections have the same shape (see (10) and (12)). A compari-
son of their constituent parts gives the reduction of the GW ≡ CB Conjecture to M0,4.
This comparison relies on Witten’s Dictionary (Section 2.2), which gives the rank of
a CB bundle in terms of a computation in the cohomology ring of a Grassmannian.

Using Proposition 4.1, we provide an alternative characterization of the GW ≡ CB
Conjecture for n = 4, reinterpreting such classes as intersection numbers on two-
step flag varieties. We show using Proposition 4.3 that for partitions satisfying the
column condition, the GW class on M0,4 can be identified with an intersection of
Schubert classes on a two-step flag variety, and with this, prove Proposition 5.4, the
key identity on the GW side of the story.

Proposition 5.6 is the identity on the other side of the story, giving a relation
for first Chern classes of critical level CB bundles analogous to Proposition 5.4.
The proof depends on rank conditions, which we check with Witten’s Dictionary,
quantum cohomology, and Schubert calculus.

As we show in Proposition 6.2, our proof of Theorem B gives sufficient criteria
for the non-vanishing of GW and CB divisors. Proposition 6.2 partially answers the
question of finding necessary and sufficient conditions for non-vanishing of CB divi-
sors, asked in [11]. If such globally generated divisors were numerically equivalent
to zero, then their associated maps would be constant. In particular, establishing that
the divisors are non-zero is the first step to finding potentially interesting morphisms.

One reason for interest in identifications of classes (such as the GW classes)
that arise as geometric loci, with characteristic classes of globally generated vector
bundles (such as the critical level CB bundles) is that we can hope to gain some infor-
mation about the morphisms they determine. We know in case l = 1 or r = 1 that
such morphisms have images with modular interpretations as (weighted) points sup-
ported on Veronese curves [19, 20, 22, 25]. Moreover, identities like that predicted by
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the GW ≡ CB Conjecture constrain the number of potentially independent extremal
rays of the cone of nef divisors, giving evidence that it may be polyhedral, as pre-
dicted [24], in spite of the large numbers of nef divisors given by GW divisors and
first Chern classes of vector bundles of coinvariants. Both constructions give rise to
basepoint free cycles of arbitrary codimension, and in [14], which is ongoing, we are
considering the problem of their extremality in cones of positive cycles.

The GW classes we work with here are an example of a more general class of
basepoint free Gromov-Witten loci I

c,X
d,α• of codimension c in M0,n, defined in [8]

from a homogeneous variety X = G/P and a collection of Schubert subvarieties of
X satisfying particular numerical conditions.

We study Chern classes of vector bundles that are special cases of sheaves
V(g, {W i}, l), constructed from simple modules W i over a simple Lie algebra
g. Fibers are vector spaces of coinvariants, and their duals are vector spaces of
conformal blocks. The bundles satisfy factorization, a property originally detected
by Tsuchiya and Kanie [38] in the case conformal blocks were defined on P

1

by sl2-modules. Tsuchiya, Ueno, and Yamada constructed the sheaves on a space
parametrizing stable pointed curves with coordinates, showing they satisfy factor-
ization, and are vector bundles [40]. Tsuchimoto in [39] proved they are coordinate
free and descend to Mg,n. These are referred to in the literature as Verlinde bun-
dles, vector bundles of coinvariants, vector bundles of covacua, and vector bundles
of conformal blocks. A notable feature is that (duals of) their fibers, vector spaces
of conformal blocks, are canonically isomorphic to generalized theta functions [13,
17, 27, 31]. Fakhruddin, in [16], extended an argument of [40] for smooth, pointed
curves of genus zero with coordinates, to show they are globally generated on M0,n.
Their Chern classes have subsequently been studied, including in [1, 8–11, 19, 20,
22, 32–34].

2 Background and Notation

2.1 Schubert Calculus

For positive integers r and l, let Grr,r+l denote the Grassmannian of r-planes in
C

r+l . This is a smooth projective homogeneous variety of dimension rl. Schubert
varieties Xλ are certain special subvarieties of Grr,r+l indexed by partitions in the
r × l rectangle (lr ) = (l, . . . , l). Each such partition is a weakly decreasing sequence
of at most r integers between 0 and l, and we identify partitions that differ by a
number of trailing 0’s. A partition can be represented as a Young diagram with λi

boxes in the ith row, where the rows are labelled from top to bottom. We use sequence
notations and Young diagrams interchangeably. Xλ has codimension |λ| := ∑

λi .
Each Schubert variety Xλ determines a cohomology class σλ ∈ H2|λ|Grr,r+l . These
classes form a Z-basis for the cohomology ring H∗Grr,r+l . The complement of the
Young diagram of λ, read from bottom to top, gives the dual partition λ∨.
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Schur polynomials {sλ} form a Z-basis for the ring of symmetric functions �. We
write

sλ1 · sλ2 · · · sλn =
∑

ν

cν
λ•sν, (2)

where cν
λ• are the generalized Littlewood-Richardson coefficients, and we note that

cν
λ• = 0 unless

∑
i |λi | = |ν|. When n = 2, this gives the usual Littlewood-

Richardson coefficients cν
λ1,λ2 .

There is a surjective ring homomorphism � → H∗Grr,r+l defined by

sλ 
→
{

σλ if λ ⊆ (lr )

0 if λ �⊆ (lr )
.

In particular, given a collection of partitions λ• = (λ1, . . . , λn), each contained in an
r × l rectangle (lr ), the product of Schubert classes σλi ∈ H2|λi |Grr,r+l is given by

σλ1 · σλ2 · · · σλn =
∑

ν

cν
λ•σν,

where we sum over ν such that
∑

i |λi | = |ν| and ν ⊆ (lr ), and cν
λ• are the gener-

alized Littlewood-Richardson coefficients in (2). Observe also that for ν ⊆ (lr ), we
have cν

λ• = ∫
Grr,r+l

∏n
i=1 σλi · σν∨ .

In Appendix A, we state and prove some facts about Littlewood-Richardson coef-
ficients that we will use in the proofs of our main results. For example, we show
in Lemma A.1 a useful factorization identity that is a special case of such identities
for Littlewood-Richardson coefficients on the boundary of the cone given by Horn
inequalities.

2.2 GW Classes and GW Invariants onM0,n

Let M0,n(Grr,r+l , d) denote the Kontsevich moduli space of genus zero degree d

stable maps to Grr,r+l . This parametrizes data (f, C, p1, . . . , pn), where C is a con-
nected nodal curve of genus 0, and f : C → Grr,r+l is a map such that f∗[C] = d in
H2Grr,r+l . This space of stable maps is an irreducible projective variety of dimension
n − 3 + (r + l)d + rl that comes with n evaluation maps evi : M0,n(Grr,r+l , d) −→
Grr,r+l , given by sending (f, C, p1, . . . , pn) to f (pi). Given a collection of parti-
tions λ• = (λ1, . . . , λn), each contained in an r × l rectangle, we say that λ• satisfies
the codimension c cycle condition if c = ∑n

i=1 |λi |− (r + l)d −rl. For such a collec-

tion λ•, consider the associated Schubert classes σλi ∈ H2|λi |Grr,r+l and define the
GW class of codimension c on M0,n as

I
c,X
d,λ• := η∗

(
ev∗

1σλ1 · · · ev∗
nσλn ∩ [M0,n(Grr,r+l , d)]) , (3)

where η : M0,n(Grr,r+l , d) → M0,n is the (flat) map that sends (f, C, p1, . . . , pn) to
(C, p1, . . . , pn). Note that since dim M0,n = n − 3, c is equal to the codimension of
I

c,X
d,λ• in M0,n.
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This is a base point free cycle on M0,n [8]. These classes are called GW divisors
when they are of codimension c = 1. In particular, when d = 1 and the collection λ•
satisfies:

n∑

i=1

|λi | = (r + l) + rl + 1 = (r + 1)(l + 1), (4)

we obtain GW divisors I
1,Grr,r+l

1,λ• on M0,n. The condition in (4) is called the critical
level condition.

Using the identification of the bottom and top cohomology groups with Z, when
d = 0 and c = 0, we obtain generalized Littlewood-Richardson coefficients of
Section 2.1:

I
0,Grr,r+l

0,λ• = c
(lr )
λ• =

∫

Grr,r+l

σλ1 · · · σλn . (5)

Similarly when
∑n

i=1 |λi | = (r + l)d + rl + n − 3, the GW classes I
n−3,Grr,r+l

1,λ• of

codimension n − 3 on M0,n are the n-pointed Gromov-Witten invariants

Id(σλ1 , . . . , σλn) = I
n−3,Grr,r+l

d,λ• . (6)

2.3 Quantum Cohomology of the Grassmannian

The (small) quantum cohomology ring of the Grassmannian Grr,r+l is defined as a
module over Z[q] by QH∗Grr,r+l := H∗Grr,r+l ⊗Z Z[q]. There is a Z[q]-basis of
Schubert classes σλ ⊗ 1, which we also denote by σλ in an abuse of notation. There
is a quantum product that defines an associative ring structure on the graded ring
QH∗Grr,r+l , where σλ has degree |λ| and q has degree r+l [6]. The quantum product
is defined by:

σλ1 ∗ σλ2 =
∑

ν,d

c
d,ν

λ1,λ2q
dσν,

where c
d,ν

λ1,λ2 is the 3-pointed Gromov-Witten invariant Id(σλ1 , σλ2 , σν∨), where ν∨
is the partition dual to ν defined in Section 2.1.

Since the σλ form a basis for QH∗Grr,r+l as a Z[q]-module, we can write

σλ1 ∗ · · · ∗ σλn =
∑

ν,d

c
d,ν
λ• qdσν . (7)

We call these structure coefficients c
d,ν
λ• the degree d quantum Littlewood-Richardson

coefficients. Note that c
d,ν
λ• = 0 unless

∑ |λi | = |ν| + (r + l)d . Note also that the

quantum Littlewood-Richardson coefficients c
d,ν
λ• are in general not Gromov-Witten

invariants themselves, though they are determined by the 3-pointed Gromov-Witten
invariants.

By the Main Lemma of [3], quantum products can be obtained by first computing
classical products and then removing rim-hooks. We state the Main Lemma here for
the convenience of the reader. We first define classes σλ for all partitions λ, not just
those fitting into an (lr ) rectangle: for any nonempty partition λ = (λ1, . . . , λs), let

σλ = det(σλi+j−i )1≤i,j≤s ∈ QH2|λ|Grr,r+l ,
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where the determinant is computed using the quantum product. Here, σp = 0 for
p < 0 and σp = σ(p) for p ≥ 0. When λ fits into an (lr ) rectangle, this gives the
(quantum) Schubert class σλ; this is the result of [6] that the Giambelli formula in
quantum cohomology is the same as it is for cohomology.

An m-rim-hook of a partition is defined to be a collection of m boxes in a partition,
which start at the bottom of a column and move right and up along the rim. An m-
rim-hook is illegal if once removed, what remains is not a partition. The width w of
an m-rim-hook is the number of columns it occupies (Fig. 1).

Lemma 2.1 (Main Lemma, [3]) Let λ be a partition. The following is true in
QH∗Grk,m: If λ contains an illegal m-rim-hook, or if λk+1 > 0 and λ does not con-
tain an m-rim-hook, then σλ = 0. If μ is the result of removing an m-rim-hook of
width w from λ, then σμ = (−1)w+m−kqσλ.

We use this formulation of computing classically and removing rim-hooks in the
proof of Lemma 5.5, which is a critical ingredient for the proof of Theorem B.

2.4 CB Bundles in Type A, Ranks, Critical Level Vanishing and Identities

Partitions λ• for Grr,r+l parametrize simple slr+1-modules, and collections of par-
titions give rise to vector bundles V(slr+1, λ

•, l) on the moduli space of curves. To
describe them, we note that the simple slr+1-module corresponding to λi gives rise
to a simple integrable module Hλi over the affine Lie algebra ŝlr+1 at level l. A fiber
of V(slr+1, λ

•, l) at (C, P •) ∈ M0,n is a vector space of coinvariants

Hλ1 ⊗ · · · ⊗ Hλn
/
slr+1(C \ P •) · (Hλ1 ⊗ · · · ⊗ Hλn) ,

the largest quotient of the tensor product of the modules Hλi on which the natural Lie
algebra slr+1(C \ P •) = slr+1 ⊗ O(C \ P •) acts trivially. Sheaves of coinvariants
are defined for all l ∈ C different than the dual coxeter number, and Tsuchiya, Ueno,
and Yamada [40] show that if l is a positive integer, they are locally free of finite
rank. While defined on the stack parametrizing stable n-pointed coordinatized curves,
Tsuchimoto [39] showed V(slr+1, λ

•, l) is independent of coordinates, and descend
to the stack Mg,n. We consider Chern classes of the bundles for g = 0 on the moduli

Fig. 1 A 7-rim-hook of width 4
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space M0,n, which represents M0,n. Details are given in [4, §2], where an explanation
for how to compute the rank of V(slr+1, λ

•, l) via the Verlinde formula can be found.
For the bundle to be nontrivial, (r + 1) must divide the total sum

∑n
i=1 |λi |. On

M0,n such bundles are globally generated [16]. The following result allows one to
obtain the rank of V(slr+1, λ

•, l) via (quantum) cohomology of Grassmannians [5].

Theorem 2.2 (Cohomological form of Witten’s Dictionary) Let λ• be a collection of
n partitions contained in an r × l rectangle satisfying

∑n
i=1 |λi | = (r + 1)(l + s) for

some s ∈ Z. Then the rank R of V(slr+1, λ
•, l) on M0,n may be computed as follows:

(1) If s ≤ 0, then R is equal to

∫

Grr+1,r+1+l+s

σλ1 · σλ2 · · · · · σλn = c
(l+s)r+1

λ• ,

where the second equality follows from (5).

(2) If s ≥ 0, then R is equal to c
s,(lr+1)
λ•,(l)s . As in (6), this is the coefficient of qsσ(lr+1)

in the quantum product

σλ1 ∗ σλ2 ∗ · · · ∗ σλn ∗ σ s
(l) in QH

∗Grr+1,r+1+l .

Here, σ(lr+1) is equal to the point class [pt].

2.5 Critical Level Vanishing and Identities

Suppose we are given a collection of n partitions λ• = (λ1, . . . , λn) for slr+1,
and suppose that r + 1 divides the sum

∑n
i=1 |λi | (see Remark B.3). Following

[10, Def 1.1], we define the critical level for the pair (slr+1, λ
•) to be

c(slr+1, λ
•) = −1 + 1

r + 1

n∑

i=1

|λi |.

We say that the bundle V(slr+1, λ
•, l) is

(1) at the critical level when
∑

i |λi | = (r + 1)(l + 1), so l = c(slr+1, λ
•)

(2) above the critical level when
∑

i |λi | = (r + 1)(l + s) for s ≤ 0, so l >

c(slr+1, λ
•).

A bundle V(slr+1, λ
•, l) that is at the critical level will be referred to as a critical

level bundle.
By [10, Prop 1.6], critical level bundles satisfy identities:

c1(V(slr+1, λ
•, l)) = c1(V(sll+1, (λ

T )•, r)), (8)

where (λ•)T denotes the collection of n partitions each transpose to λi .
Furthermore, when l > c(slr+1, λ

•), then by [10, Prop 1.3], c1(V(slr+1, λ
•, l)) =

0 (see also [34, Cor 9.1]).
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3 Reductions to the 4-Pointed Case

In this section we prove two reduction results. We first prove Theorem A, which
reduces the GW ≡ CB Conjecture to the n = 4 case. With similar ideas, we prove
Proposition 3.2, which reduces Theorem B to the n = 4 case.

3.1 Proof of Theorem A

A collection of partitions λ• = (λ1, . . . , λn) satisfying
∑

i |λi | = (r + 1)(l + 1)

determines both a critical level CB bundle V(slr+1, λ
•, l) and a GW divisor I

1,Grr,r+l

1,λ• .
We will show both divisors intersect all curves in the same degree.

The F -curves, described in Definition B.1, span the vector space of 1-cycles, so
it suffices to show that the intersections of the divisors with all F -curves are the
same. An F -curve is indexed by a decomposition {1, . . . , n} = N1 ∪ · · · ∪ N4. Let
λ(Nj ) = (λi : i ∈ Nj) denote the subcollection of partitions in λ• indexed by Nj . We
write λ(Nj )∪μ for the collection of partitions (λ(Nj ), μ) obtained by appending μ to
λ(Nj ). Recall that (μj )∨ is the partition dual to μj given by taking the complement
of μj in a box of size r × l (pictured on the left of Fig. 2).

By [8, Prop 2.2], the degree of the intersection of an F -curve FN1,N2,N3,N4 with

the GW divisor I
1,Grr,r+l

1,λ• is given by the formula

I
1,Grr,r+l

1,λ• · FN1,N2,N3,N4 =
∑

I
1,Grr,r+l

1−∑4
j=1 dj ,μ•

4∏

j=1

I
0,Grr,r+l

dj ,λ(Nj )∪(μj )∨ , (9)

summing over 4-tuples of integers d• = (d1, · · · , d4) and 4-tuples of partitions
μ• = (μ1, . . . , μ4) for Grr,r+l . Note that we must have 1 − ∑

j dj ≥ 0, so

dj ≤ 1. Furthermore, I
1,Grr,r+l

0,μ• = 0. Hence, to have a non-zero summand, we may

assume dj = 0 for all j . Also, for I
0,Grr,r+l

0,λ(Nj )∪(μj )∨ to be non-zero, we must have
∑

i∈Nj
|λi |+ |(μj )∨| = rl or equivalently, |μj | = ∑

i∈Nj
|λi |. Thus, the intersection

of FN1,N2,N3,N4 with I
1,Grr,r+l

1,λ• is given by

I
1,Grr,r+l

1,λ• · FN1,N2,N3,N4 =
∑

μ•
I

1,Grr,r+l

1,μ•
4∏

j=1

I
0,Grr,r+l

0,λ(Nj )∪(μj )∨, (10)

where our sum ranges over partitions μ• = {μj }4
j=1 for Grr,r+l satisfying

|μj | =
∑

i∈Nj

|λi | for j = 1, 2, 3, 4. (11)
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The intersection of FN1,N2,N3,N4 with c1(V(slr+1, λ
•, l)) is given by the following

formula (see Lemma B.2):

c1(V(slr+1, λ
•, l)) · FN1,N2,N3,N4

=
∑

ν•
c1(V(slr+1, ν

•, l))
∏

1≤j≤4

Rk(V(slr+1, λ(Nj ) ∪ (νj )∗, l)), (12)

where one sums over 4-tuples of partitions ν• = {νj }4
j=1 of Grr,r+l , and (νj )∗ is the

complement of νj in the rectangle of size (r + 1) × ν
j

1 . This is a slightly different
notion of dual, pictured on the right of Fig. 2.

By Lemma B.2, the term for ν• in (12) is zero unless

|νi | =
∑

i∈Nj

|λi | for j = 1, 2, 3, 4. (13)

Thus, the non-zero terms of (10) and (12) are both indexed by 4-tuples of partitions

satisfying (11) (equivalently (13)). We have that (10) and (12) are equal if I
1,Grr,r+l

1,μ• =
c1(V(slr+1, μ

•, l)), which holds by the assumption, and if

I
0,Grr,r+l

0,λ(Nj )∪(μj )∨ = Rk(V(slr+1, λ(Nj ) ∪ (μj )∗, l)), for all 1 ≤ j ≤ 4. (14)

By (the cohomological form of) Witten’s Dictionary in Section 2.4, since
∑

i∈Nj

|λi | + |(μj )∗| = (r + 1)μ
j

1 = (r + 1)(l + s), for s ≤ 0,

setting λ(Nj ) = {γ 1, . . . , γ k}, the rank of the vector bundle V(slr+1, λ(Nj ) ∪
(μj )∗, l) is equal to the intersection number

σγ 1 · σγ 2 · · · σγ k · σ(μj )∗ ∈ H∗Grr+1,r+1+l+s . (15)

Since μj has width μ
j

1 = l + s, (μj )∗ is the complement of μj in an (r + 1) ×
(l + s) rectangle. Therefore, the quantity in (15) is equal to the classical generalized

Littlewood-Richardson coefficient c
μj

γ • , which can be computed in any Grassmannian

where μj lies, in particular in Grr,r+l . From (5), the rank is therefore also equal to

I
0,Grr,r+l

0,λ(Nj )∪(μj )∨ , establishing (14). Theorem A holds.

Fig. 2 Two notions of duals
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Remark 3.1 For fixed (r, l, λ•), Theorem A reduces the GW ≡ CB Conjecture to a
finite computation. For small r and l, this is feasible with a computer and allows us
to establish several new cases of the conjecture (see Section 6).

3.2 Reduction of Theorem B to the Case n = 4

Theorem B shows the GW ≡ CB Conjecture holds for all partitions satisfying the
column condition (see Definition 1.1). In the following, we show that it suffices to
prove Theorem B in the case n = 4.

Proposition 3.2 The GW ≡ CB Conjecture holds for all n-tuples of partitions sat-
isfying the column condition if the GW ≡ CB Conjecture holds for all 4-tuples of
partitions satisfying the column condition.

Proof For partitions λ, μ, ν, consider the Littlewood-Richardson coefficient cν
λ,μ.

We use the following basic fact from Schubert calculus:

If cν
λ,μ �= 0, then #ν ≤ #λ + #μ. (16)

We also use the ideas in the proof of Theorem A. In particular, we gave a corre-
spondence between the non-zero terms of the sums in (10) and (12). In a factor of a
non-zero term

I
0,Grr,r+l

0,λ(Nj )∪(μj )∨ =
∏

i∈Nj

σλi · σ(μj )∨ = RkV(slr+1, {λi}i∈Nj
∪ (μj )∗, l),

the partition μj must appear with non-zero coefficient in the product
∏

i∈Nj
λi .

Now suppose that (λ1, . . . , λn) satisfy the column condition. By (16), the ν such
that σν appears with non-zero coefficients in

∏
i∈Nj

σ i
λ, also have #ν ≤ ∑

i∈Nj
#λi .

Hence, the term for (μ1, . . . , μ4) in (10) and (12) is zero unless

#μj ≤
∑

i∈Nj

#λi for all j . (17)

In particular, we actually need only show I
1,Grr,r+l

1,μ• = c1(V(slr+1, μ
•, l)) for

(μ1, . . . , μ4) satisfying (17). If our original collection (λ1, . . . , λn) satisfies the
column condition, then (μ1, . . . , μ4) satisfying (17) satisfies

4∑

j=1

#μj ≤
4∑

j=1

∑

i∈Nj

#λi =
n∑

i=1

#λi ≤ 2(r + 1),

which is the column condition for the 4-tuple (μ1, . . . , μ4).
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4 Connection to Two-Step Flag Varieties and GW Invariants for d = 1

In this section, we review the “quantum-equals-classical” result of [12] which com-
putes 3-pointed Gromov-Witten invariants on Grr,r+l as intersection numbers on a
two-step flag variety Flr−d,r+d;r+l of nested subspaces Vr−d ⊂ Vr+d in an r + l-
dimensional vector space, with dim Vi = i. We extend this relationship in the case
d = 1 to n-pointed Gromov-Witten invariants. As a consequence, we can compute
dimension-0 GW classes on a two-step flag variety. When n = 4, the dimension-0
GW classes are divisors and this is a key step for our GW ≡ CB result.

To state [12, Cor 1], we use the following terminology. As discussed in Section 2.1,
the basis of Schubert classes σλ for Grr,r+l is indexed by partitions λ contained in
an r × l rectangle. Such a partition λ can be uniquely identified with a permutation
wλ ∈ Sr+l by defining wλ(i) = λr−i+1 + i for 1 ≤ i ≤ r and then ordering the
values wλ(r + 1) < · · · < wλ(r + l). Note that wλ(i) < wλ(i + 1) for i �= r , i.e., wλ

is a Grassmann permutation with only possible descent at r .
For 1 ≤ d ≤ min{r, l} and λ ⊆ (lr ), consider the permutation obtained from wλ by

sorting the values wλ(r −d +1), . . . , wλ(r +d) in increasing order. By construction,
this has descents at most at r − d and r + d , and so corresponds to a Schubert class
σ

(d)
λ on the flag variety Flr−d,r+d;r+l (for more details on two-step flag varieties,

including the Schubert basis as well as an alternative basis of classes on two-step flag
varieties indexed by pairs of partitions, following [23], see Appendix A.2).

By [12, Cor 1], for partitions λ1, λ2, λ3 ⊆ (lr ) satisfying |λ1| + |λ2| + |λ3| =
rl + (r + l)d , we have:

Id(σλ1 , σλ2 , σλ3) =
∫

Flr−d,r+d;r+l

σ
(d)

λ1 · σ
(d)

λ2 · σ
(d)

λ3 . (18)

We will show that the n-pointed Gromov-Witten invariant I1(σλ1 , . . . , σλn) can be
computed using classical Schubert calculus on Flr−1,r+1;r+l .

Proposition 4.1 Consider an n-tuple of partitions λ• = (λ1, . . . , λn) contained in
an r×l rectangle, satisfying c := ∑n

i=1 |λi |−r−l−rl = n−3, and let σ (1)

λ1 , · · · , σ
(1)
λn

be the associated classes in H∗Flr−1,r+1;r+l . Then

I
n−3,Grr,r+l

1,λ• = I1(σλ1 , . . . , σλn) =
∫

Flr−1,r+1;r+l

n∏

i=1

σ
(1)

λi .

When n = 3, this recovers (18) for d = 1. When n = 4, this computes the GW divisor

I
1,Grr,r+l

1,λ1,...,λ4 .

Remark 4.2 The second equality in Proposition 4.1 doesn’t require n ≥ 3.

Before proving Proposition 4.1, we need the following lemma, which is a special
case of the main theorem in [30]. See also [29, Prop 4.1.5] for the projective space
case. We give a simple alternative proof for our case.
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Lemma 4.3 Let λ• = (λ1, . . . , λn) be an n-tuple of partitions contained in an r × l

rectangle satisfying
∑n

i=1 |λi | − r − l − rl = n − 3. Then the n-pointed Gromov-
Witten invariant I1(σλ1 , . . . , σλn) is equal to the number of lines in Grr,r+l that meet
g1Xλ1 , · · · , gnXλn , where giXλi are general translates of the associated Schubert
varieties in Grr,r+l .

Proof First note that if L is a line in Grr,r+l and X a Schubert variety in Grr,r+l , then
L∩X is L, one point, or empty. To see this, we have L = {	 ∈ Grr,r+l : K ⊂ 	 ⊂ S}
for some subspaces K, S in C

r+l with dim K = r −1, dim S = r +1. Each Schubert
variety is an intersection of Schubert varieties of the form {	 ∈ Grr,r+l : dim(	 ∩
F) ≥ j} for some subspace F of Cr+l . Without loss of generality, assume X is of
this form. Suppose L ∩ X contains two distinct points. Then either dim(K ∩ F) ≥ j ,
or dim(K ∩ F) = j − 1 and dim(S ∩ F) = j + 1. Either way, L is contained in X.

Let L be a line in Grr,r+l that meets all giXλi . By the above, each giXλi contains
either the entire L or exactly one point in L. On the other hand, the intersections
giXλi ∩ L must be disjoint, because otherwise we can construct a map in the bound-
ary of M0,n(Grr,r+l , 1) with image L, but the intersection ev−1

1 (g1Xλ1) ∩ · · · ∩
ev−1

n (gnXλn) is supported on M0,n(Grr,r+l , 1) [18, Lemma 14]. Therefore, each
giXλi must meet L at a distinct point in L. Note that a degree 1 map from P

1 to
Grr,r+l is an isomorphism onto its image. Since the choice of marked points exists
and is unique, each L uniquely determines a map in ev−1

1 (g1Xλ1)∩· · ·∩ev−1
n (gnXλn)

and vice versa.

Proof of Proposition 4.1 The first equality is just the observation in (6) that the
degree of the dimension-0 GW class is equal to the Gromov-Witten invariant.

Using Lemma 4.3, we can compute I1(σλ1 , . . . , σλn) using intersection theory on
a two-step flag variety. Consider the diagram

For a Schubert variety Xλ in Grr,r+l , let

X
(1)
λ := q(p−1(Xλ)) = {(A, B) ∈ Flr−1,r+1;r+l |∃V ∈ Xλ with A ⊂ V ⊂ B}

be the Schubert variety in Flr−1,r+1;r+l considered in [12, §2.2] and σ
(1)
λ its class.

When one of the Xλi is the entire Grr,r+l , Proposition 4.1 holds because all three
numbers are 0. Now assume each Xλi has positive codimension.

When Xλ has positive codimension, it is contained in a Schubert divisor, which
intersects a general line at one point. Therefore, a general line meeting Xλ meets it
in one point and the map q sends p−1(Xλ) generically one-to-one onto its image. It
follows that

σ
(1)
λ = [q(p−1(Xλ)] = q∗p∗[Xλ] = q∗p∗σλ. (19)
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Moreover, p−1(Xλ) is the space of pairs (L, V ) where L Hence, X
(1)
λ is the

subvariety of lines L on Grr,r+l that meet Xλ, so Lemma 4.3 shows that

∫

M0,n(Grr,r+l ,1)

n∏

i=1

ev∗
i σλi =

∫

Flr−1,r+1;r+l

n∏

i=1

σ
(1)

λi . (20)

Since the left-hand side is exactly the n-pointed Gromov-Witten invariant
I1(σλ1 , . . . , σλn) [18], this concludes the proof.

5 The GW≡ CB Conjecture for a Class of Partitions

By the previous section, we have turned the problem of computing degrees of GW
divisors into one of computing intersections of certain classes on Flr−1,r+1;r+l .
When partitions (λ1, . . . , λ4) satisfy the column condition (Definition 1.1), we
show that this product can be expressed in terms of intersection products on two
Grassmannians. The main result of this section is the following.

Proposition 5.1 Let (λ1, . . . , λ4) be partitions indexing Schubert classes in Grr,r+l .
Suppose

∑
i |λi | = (r + 1)(l + 1) and

∑
i #λi ≤ 2(r + 1). Then

I
1,Grr,r+l

1,λ1,...,λ4 ≡ c1(V(slr+1, λ
•, l)).

If the strict inequality
∑

i #λi < 2(r + 1) holds, both divisors are 0.

Combining Propositions 3.2 and 5.1 gives Theorem B. Proposition 5.1 is proved
in Section 5.3.

5.1 The Gromov-Witten Side

We use Proposition A.5 to compute degree 1, 4-pointed Gromov-Witten invariants
on Grr,r+l via Schubert calculus on the two-step flag variety Flr−1,r+1;r+l .

We first explain how to describe Schubert classes σ
(1)
λ on Flr−1,r+1;r+l using pairs

of partitions, following the notation of Appendix A.2.

Definition 5.2 Given a partition λ ⊆ (lr ), define α to be a single column of
height #λ − 1, i.e., α = (1#λ−1). We picture α as the first column of λ minus a
box. Define β to be the partition obtained by removing the first column of λ. We
view α as lying in an (r − 1) × 2 rectangle and β in an r × (l − 1) rectangle.
We also define α to be the partition corresponding to the first column of λ, i.e.,
α = (1#λ).

Example 5.3 If λ = (4, 4, 2, 1), then α = (1, 1, 1) and β = (3, 3, 1).
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Proposition 5.4 (Gromov-Witten divisor identity) Let (λ1, . . . , λ4) be partitions
defining Schubert classes on the Grassmannian Grr,r+l . Let (αi, βi) be the associ-
ated pair of partitions for λi as in Definition 5.2. Suppose

∑
i |λi | = (r + 1)(l + 1)

and
∑

i #λi ≤ 2(r + 1). Then

I
1,Grr,r+l

1,λ1,...,λ4 = I
0,Grr−1,r+1

0,α1,...,α4 I
0,Grr+1,r+l

0,β1,...,β4 . (21)

If
∑

i #λi < 2(r + 1), then I
1,Grr,r+l

1,λ1,...,λ4 = 0.

Proof Since |αi | = #λi − 1, we have
∑

i |αi | ≤ 2(r − 1). The inequality is strict if

and only if
∑

i #λi < 2(r + 1). In this case, I
0,Grr−1,r+1

0,α1,...,α4 = 0 and by Proposition A.5,

I
1,Grr,r+l

1,λ1,...,λ4 = 0. Otherwise,
∑

i |αi | = 2(r−1) and
∑

i |βi | = (r+1)(l−1). The result
(21) now follows from Proposition A.5, Proposition 4.1 with n = 4, and (5).

5.2 An Analogous Identity on the Critical Level CB Bundle Side

The aim of this section is to establish an identity for critical level CB bundles satis-
fying the column condition (Definition 1.1). Witten’s dictionary is used to calculate
the ranks of the vector bundles of coinvariants in type A in terms of quantum coho-
mology. By translating this to a classical calculation via rim-hook removals (using
Lemma 2.1), we prove the following.

Lemma 5.5 Let λ• = (λ1, . . . , λn) be a collection of partitions inside an r × l

rectangle satisfying
∑

i |λi | = (r + 1)(l + 1). If
∑

i #λi = 2(r + 1), then the rank
of V(slr+1, λ

•, l) on M0,n is equal to a classical generalized Littlewood-Richardson
coefficient:

Rk(V(slr+1, λ
•, l)) = c

(lr+1,1r+1)
λ• .

Proof By the formulation of Theorem 2.2 in Section 2.4, the rank R is equal to the

degree s = 1 generalized quantum Littlewood-Richardson coefficient c
1,(lr+1)
λ•,(l) on

QH∗Grr+1,r+1+l . The result follows immediately from Lemma A.2.

For a collection λ• = (λ1, . . . , λn) of partitions inside an r×l rectangle, let αi and
βi be as in Definition 5.2 so that λi = αi + βi . The following identity is analogous
to Proposition 5.4.
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Proposition 5.6 (Critical level divisor identity) Let λ• = (λ1, . . . , λn) be a collec-
tion of partitions inside an r × l rectangle. Suppose

∑
i |λi | = (r + 1)(l + 1) and∑

i #λi = 2(r + 1). Then

c1(V(slr+1, λ
•, l)) = c1(V(slr+1, α

•, 1))RkV(slr+1, β
•, (l − 1)),

where for each 1 ≤ i ≤ n, λi = αi + βi , where αi is the first column of λi .

Proof The first step in the proof is to show that

Rk(V(slr+1, λ
•, l)) = Rk(V(slr+1, β

•, (l − 1))). (22)

Since |αi | = #λi , we have
∑

i |βi | = (r+1)(l−1), and so by Theorem 2.2, the right-

hand side is equal to the generalized Littlewood-Richardson coefficient c
(l−1)r+1

β• .

Since c
(lr+1,1r+1)

λ• = c
(l−1)r+1

β• by Lemma A.1, applying Lemma 5.5 to the left-hand
side gives the result.

Having established the rank equality (22), by [11, Prop 19],

c1(V(slr+1, λ
•, l)) = c1(V(slr+1, α

•, 1))Rk(V(slr+1, β
•, (l − 1)))

+c1(V(slr+1, β
•, (l − 1)))Rk(V(slr+1, α

•, 1)). (23)

We will show the second line of (23) is zero. Since
∑n

i=1 |βi | = (r + 1)(l − 1),
recalling the definition from Section 2.5, the critical level of the pair (slr+1, β

•) is

c(slr+1, β
•) = (l − 1) − 1 = l − 2,

and so as the level of V(slr+1, β
•, (l − 1)) is l − 1 > l − 2, by [10, Thm 1.3], we

conclude that c1(V(slr+1, β
•, (l − 1))) = 0. In particular, (23) becomes

c1(V(slr+1, λ
•, l)) = c1(V(slr+1, α

•, 1))Rk(V(slr+1, β
•, (l − 1))).

The proposition follows.

5.3 Proof of Proposition 5.1 and Theorem B

Proof By Proposition 3.2, Proposition 5.1 implies Theorem B. Thanks to the two
identities (Propositions 5.4 and 5.6), to prove Proposition 5.1, it suffices to show that

deg(V(slr+1, α
•, 1))RkV(slr+1, β

•, l − 1) = I
0,Grr−1,r+1

0,α1,...,α4 I
0,Grr+1,r+l

0,β1,...,β4 .

We start on the CB side. From the proof of Proposition 5.6, it follows that

Rk(V(slr+1, β
•, l − 1)) = c

(l−1)r+1

β• = I
0,Grr+1,r+l

0,β1,...,β4 .

By [7], the conjecture holds for l = 1, and so

c1(V(slr+1, α
•, 1)) = I

1,Grr,r+1

1,α1,...,α4
.

Finally, we apply Proposition 5.4 to the αi to see that

I
1,Grr,r+1

1,α1,...,α4
= I

0,Grr−1,r+1

0,α1,...,α4 .

The theorem now follows.
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5.4 Corollaries

We expect that the propositions above will allow us to see unexpected behavior on
both the critical level CB and GW sides. For example, the following proposition is
surprising from the perspective of conformal blocks (see Remark 5.8).

Lemma 5.7 Let (λ1, . . . , λ4) be partitions for Grr,r+l , with #λ1 ≥ · · · ≥ #λ4 and∑
i |λi | = (r + 1)(l + 1). Let μ1 be obtained from λ1 by adding a maximal row, let

μ2 be obtained from λ2 by adding a single box at the end of the first column, and let
μ3 = λ3, and μ4 = λ4. Then

c1(V(slr+1, λ
•, l)) = c1(V(slr+2, μ

•, l)).

Proof First note that

|μ1| + |μ2| + |λ3| + |λ4| = (r + 1)(l + 1) + l + 1 = (r + 2)(l + 1),

as by assumption |λ1| + |λ2| + |λ3| + |λ4| = (r + 1)(l + 1). If μi corresponds to the
pair of partitions (α̃i , β̃i), and λi to (αi, βi), then

|α̃1| + |α̃2| + |α3| + |α4| = 2 + |α1| + |α2| + |α3| + |α4| = 2 + 2(r − 1) = 2r .

This shows that the partitions (μ1, μ2, λ3, λ4) satisfy the conditions of Proposi-
tion 5.1. It therefore suffices to show this statement on the Gromov-Witten locus side.
That is, we show that

I
1,Grr,r+l

1,λ1,λ2,λ3,λ4 = I
1,Grr+1,r+1+l

1,μ1,μ2,λ3,λ4 .

By Proposition 5.4,

I
1,Grr+1,r+1+l

1,μ1,μ2,λ3,λ4 = I
0,Grr,r+2

0,α̃1,α̃2,α3,α4I
0,Grr+2,r+l+1

0,β̃1,β̃2,β3,β4 ,

and
I

1,Grr,r+l

1,λ1,...,λ4 = I
0,Grr−1,r+1

0,α1,...,α4 I
0,Grr+1,r+l

0,β1,...,β4 .

The lemma will follow from showing that

I
0,Grr−1,r+1

0,α1,...,α4 = I
0,Grr,r+2

0,α̃1,α̃2,α3,α4 and I
0,Grr+1,r+l

0,β1,...,β4 = I
0,Grr+2,r+l+1

0,β̃1,β̃2,β3,β4 .

Notice that β̃1 is β1 with an extra maximal row added, while β̃2 = β2. The second
equality thus follows easily from Schubert calculus. For the first, note that for i =
1, 2, α̃i is obtained from αi by adding an extra box at the end of the column (these are
both columns of length 1). Choosing α1 and α2 to be the longest of the four columns
ensures that |α1| + |α2| ≥ r − 1, and hence |α̃1| + |α̃2| ≥ r + 1. Every partition
μ fitting into an r × 2 box with c

μ

α̃1α̃2 �= 0 has at least one maximal width row.
Removing this row identifies the product σα1σα2 in Grr−1,r+1 with that of σα̃1σα̃2 in
Grr,r+2. The desired equality follows.

Remark 5.8 The bundles in Lemma 5.7 are at the critical level, and so by
[10, Prop 1.6] the assertion is equivalent to the statement c1(V(sll+1, λ

T• , r)) =
c1(V(sll+1, μ

T• , r+1)). At first glance, one may think that this can be shown by using
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the additive identity [11, Prop 19], to decompose c1(V(sll+1, μ
T• , r + 1)) into a sum

of the first Chern class of a level 1 bundle for sll+1 and c1(V(sll+1, λ
T• , r)), and hope

that the level one bundle has a vanishing first Chern class. To apply [11, Prop 19],
among other things, one needs Rk(V(sll+1, λ

T• , r)) = Rk(V(sll+1, μ
T• , r + 1)),

which is not always the case. For example, if λ1 = (3, 2), λ2 = (2, 1), and
λ3 = λ4 = (2, 2), so

∑
i |λi | = 16 and r = � = 3, then for μ1 = (3, 3, 2), μ2 =

(2, 1, 1), and μ3 = μ4 = (2, 2), one can compute Rk(V(sl4, (λ
T )•, 3)) = 4, and

Rk(V(sl4, (μ
T )•, 4)) = 5. From this perspective, Lemma 5.7 is surprising.

6 The GW≡ CB Conjecture in Examples and in Other Cases

For each fixed (r, l), Theorem A reduces the conjecture to a finite computation.
Namely, we must check that for every collection of 4 partitions of the correct sizes,
the degree of the critical level CB divisor agrees with the degree of the GW divisor.
The degree of the critical level CB divisor can be computed using the Macaulay2
package conformalBlocks. By Proposition 4.1 and (19), the degree of the GW divisor
is equal to the degree of the product

∏4
i=1 q∗p∗σλi , which is also readily computable

using Macaulay2. Using this, we verified the conjecture for small values of (r, l),
listed below.

Proposition 6.1 For all collections λ• of 4 partitions, the GW divisor I
1,Grr,r+l

1,λ• is
numerically equivalent to the corresponding critical level CB divisor for

(r, l) = (2, 2), (2, 3), (2, 4), . . . , (2, 11), (3, 3), (3, 4).

Our proof of Theorem B gives rise to a sufficient combinatorial criterion for the
non-vanishing of GW/CB divisors.

Proposition 6.2 The GW divisor and the CB divisor associated with λ• are non-zero
if there exists a decomposition [n] = {1, . . . , n} = N1 ∪ · · · ∪ N4 and partitions
(μ1, . . . , μ4) such that

(1) σμj appears with positive coefficient in
∏

i∈Nj
σλi ;

(2) the sum of the heights of the μj is equal to 2r + 2;
(3) the product of the σβj (where βj is obtained by removing the first column μj )

is non-zero in Grr+1,r+l .

Note that condition (2) may be satisfied even if the original collection λ• does not
satisfy the column condition. We give an example below. It is often hard to know
if appropriate μj exist. However, by working backwards we can construct many
examples where it is apparent that (1)–(3) are satisfied.

Proof Condition (1) implies
∏4

j=1 I
0,Grr,r+l

0,λ(Nj )∪(μj )∨ is positive. Condition (2) and the

Pieri rules imply I
0,Grr−1,r+1

0,α1,...,α4 is positive. Condition (3) says I
0,Grr+1,r+l

0,β1,...β4 is positive.
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Thus, by Proposition 5.4, we see I
1,Grr,r+l

1,μ1,...,μ4 is positive. In particular,

I
1,Grr,r+l

1,μ1,...,μ4

4∏

j=1

I
0,Grr,r+l

0,λ(Nj )∪(μj )∨ (24)

is positive. The term (24) appears as a summand in (10) for the calculation of

I
1,Grr,r+l

1,λ• · FN1,...,N4 . Since all summands in (10) are non-negative, it follows that

I
1,Grr,r+l

1,λ• · FN1,...,N4 is positive. Hence, I
1,Grr,r+l

1,λ• is nontrivial.
Similarly, by Theorem B in the case n = 4, the term in (24) is equal to the ν• =

μ• term in (12). This shows that the CB divisor must also intersect this F -curve in
positive degree.

Using the conditions (1)–(3) one can construct many examples that satisfy the
column condition and give non-zero GW/CB divisors. We now describe one such
infinite family. Fix m ∈ Z>0 and choose l and r so that l is odd and r + 1 is divisible
by 2m. Take each of the n = (2r + 2)/m partitions λi to be a rectangle with height
m and width (l + 1)/2. Note that λ• satisfies the column condition, as

n∑

i=1

|λi | = 2r + 2

m
· m · l + 1

2
= (r + 1)(l + 1)

and
n∑

i=1

#λi = 2r + 2

m
· m = 2r + 2.

Divide the set {1, . . . , n} evenly among N1, N2, N3, N4. For each j = 1, . . . , 4, let
μj be the partition with height (r + 1)/2 and width (l + 1)/2. Notice that the union
of (r + 1)/2m copies of λi stacked vertically is the partition μj (indicated by bold
lines in the figure below). Hence, condition (1) is readily seen to be satisfied by the
Littlewood-Richardson rules. Condition (2) is also satisfied as

4∑

j=1

#μj = 4 · r + 1

2
= 2r + 2.

Finally, in condition (3), each βj is an (r + 1)/2 by (l − 1)/2 rectangle. These 4
rectangles can be placed side by side to make an r +1 by l −1 rectangle, so applying
the Littlewood-Richardson rules, we see that condition (3) is also satisfied.

Pictured below are the partitions for this example when m = 2, r = l = 11, n =
12.

The bold lines show how μj is a union of copies of λi .
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In the example above, both μ• and λ• satisfy the column condition. Proposition 6.2
can also be used to show the nonvanishing of divisors associated with λ• not satis-
fying the column condition. For instance, we can modify our example family above
by “cutting each λi in half.” Continuing the example with r = l = 11 above, we can
take n = 24 and each λi to be (3, 3). Then

∑n
i=1 #λi = 24 · 2 = 48 > 24 = 2r + 2.

Nevertheless, criteria (1)–(3) are still satisfied for {1, . . . , 24} divided evenly among
N1, N2, N3, N4 and each μj equal to (6, 6, 6, 6, 6, 6).

We end this section with one more family of examples, which generalizes to slr+1
an example considered in [11, §5] for sl2. Take λ1 = λ2 = (1), λ3 = (l, 1r−1), λ4 =
(lr ). Then

∑
i |λi | = (r + 1)(l + 1). Here is a picture when r = 4, l = 5:

Then λ• satisfies the column identity so Theorem B says I
1Grr,r+l

1,λ• ≡
c1(V(slr+1, λ

•, l)). Using Proposition 5.4, one can compute directly that all divisors
in this family have degree 1.

Appendix A. Schubert Calculus and Two-Step Flag Varieties

In this section, we collect some useful facts about Littlewood-Richardson coefficients
and Schubert calculus. We also describe a basis of the cohomology ring of two-step
flag varieties in terms of pairs of partitions, following [23], and discuss its relation to
the basis of Schubert classes.

A.1 Factorization of Generalized Littlewood-Richardson Coefficients

We first give a technical result about generalized Littlewood-Richardson coefficients,
which is a special case of the factorization of Littlewood-Richardson coefficients.
Recall the generalized Littlewood-Richardson coefficient cλ

λ1···λn denotes the coeffi-

cient of λ in the product of the Schur polynomials associated with the λi .

Lemma A.1 Let (λ1, . . . , λn) be a collection of n partitions, and suppose that
cν
λ1···λn > 0. Assume that #ν = ∑n

i=1 #λi . Let ν̂ (respectively λ̂i) denote the parti-

tion obtained from ν (respectively λi) by removing the first column. Then cν
λ1...λn =

cν̂

λ̂1...λ̂n
.

Proof Triples of partitions (γ, δ, ρ) with non-zero Littlewood-Richardson coeffi-
cients lie in a cone cut out by Horn equalities. One (transposed) example of such an
inequality is that #γ ≤ #δ +#ρ. Littlewood-Richardson coefficients on the boundary
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of the cone satisfy factorization properties, as shown in Theorem 1.4 of [28]. After
transposing, a special case of this theorem is the statement that

c
γ
δρ = c

γ̂

δ̂ρ̂
c
(#γ )

(#δ)(#ρ) = c
γ̂

δ̂ρ̂
. (25)

The proof proceeds by induction. The base case, when n = 2, is (25). Suppose the
statement holds for n − 1 partitions. Let S denote the set of partitions μ such that
c
μ

λ1···λn−1 > 0. By induction, there is a one-to-one correspondence between S and the

corresponding set Ŝ := {η | c
η

λ̂1...λ̂n−1 > 0} for the λ̂i , given by taking μ ∈ S to

μ̂ ∈ Ŝ. Now

cν
λ1...λn =

∑

μ∈S

c
μ

λ1···λn−1c
ν
μλn .

The assumption holds for both factors in each summand, so (Fig. 3)

cν
λ1...λn =

∑

μ∈S

c
μ̂

λ̂1...λ̂n−1c
ν̂

μ̂λ̂n
= cν̂

λ̂1...λ̂n
.

Lemma A.2 Consider a collection of partitions λ• = (λ1, . . . , λn) in an r × l rect-
angle such that

∑ |λi | = (r + 1)(l + 1). If
∑

#λi = 2(r + 1), then we have the

equality c
1,(lr+1)
λ•,(l) = c

(lr+1,1r+1)
λ• , where the left-hand side is a degree 1 generalized

quantum Littlewood-Richardson coefficient for QH∗Grr+1,r+1+l , as defined in (7),
and the right-hand side is a classical generalized Littlewood-Richardson coefficient,
as defined in (2).

Proof By Lemma 2.1, we can calculate the quantum Littlewood-Richardson coeffi-

cient c
1,(lr+1)
λ•,(l) by first computing the classical product of Schur polynomials and then

removing rim-hooks to obtain qσ(lr+1). We are therefore interested in partitions β of
width at most l that have a length l + r + 1 rim-hook that produces the partition
(lr+1). It follows from the definition of rim-hooks that the minimum length of such
a partition β is 2(r + 1) + 1. However, if β appears with non-zero coefficient in the
classical product of the λi and (l), it also has length at most

∑
#λi + 1 = 2(r + 1) + 1.

Fig. 3 The partition
γ := (lr+1, 1r+1) of
Lemma A.2. Here l = 9 and
r = 3
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It follows that the only possible β that contribute have length precisely 2(r + 1) + 1.
There is exactly one such β:

γ ′ = (l, . . . , l
︸ ︷︷ ︸
r+2 times

, 1, . . . , 1
︸ ︷︷ ︸
r+1 times

),

pictured in Fig. 4.
As the sign appearing in Lemma 2.1 is positive in this case, we precisely obtain the

generalized Littlewood-Richardson coefficient c
γ ′
λ•,(l) = c

γ
λ• where γ = (lr+1, 1r+1)

is obtained from γ ′ by removing a maximal row.

A.2 Two-Step Flag Varieties

We give some constructions for and results about Schubert calculus on two-step flag
varieties, including computations using multiple bases for their cohomology rings.

Consider the flag variety Fla,b;m of nested subspaces V ⊂ W in an m-dimensional
vector space, where dim V = a, dim W = b. The cohomology ring H∗Fla,b;m has a
basis of Schubert classes indexed by permutations w ∈ Sm such that w(i) < w(i+1)

for all i �= a, b, i.e., the only possible descents of w are at positions a, b. Following
[23], we give an alternative indexing of these Schubert classes in terms of pairs of
partitions (α, β) with α ⊆ (ab−a) and β ⊆ (bm−b). We can also view α as a subset
of (am−a).

Let w be a permutation indexing a Schubert class on Fla,b;m. To find the pair of
partitions (α, β) corresponding to w, we factor w into two Grassmann permutations,
w = w2w1. This factorization is the decomposition with respect to the parabolic
subgroup Sb × Sm−b ⊆ Sm (see [2, Prop 2.4.4]). Explicitly, we set ρ to be the
permutation that

• fixes j > b, i.e., ρ(j) = j for all j > b, and
• reorders w(1), . . . , w(b) into increasing order, i.e., w(ρ(1)) < · · · < w(ρ(b)).

We set w2(i) := w(ρ(i)), and w1 := ρ−1. Note that both w1 and w2 are Grassmann
permutations, the first with a descent at a and the second with a descent at b. As such,
they define partitions α ⊆ (ab−a) ⊆ (am−a) and β ⊆ (bm−b) respectively.

Fig. 4 The partition γ ′ with its
length l + r + 1 rim-hook
shaded in gray. In this example,
l = 9 and r = 3. The partition γ

of Fig. 3 is obtained by
removing the top row of γ ′
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Given a pair of partitions (α, β), one can reverse this process to define a permuta-
tion wα,β . Note that the factorization of wα,β above is precisely the factorization

wα,β = w∅,β.wα,∅.

Definition A.3 The inversion set of a permutation ρ is the set {i < j | ρ(j) > ρ(i)}.
The number of inversions gives the codimension of the associated Schubert class.

Remark A.4 We will need the following observation in the proof of Proposition A.5:
the set {i < j ≤ b | wμ,ν(j) > wμ,ν(i)} is the inversion set of wμ,∅.

The pair (α, β) of partitions for Fla,b;m also corresponds to a product of Schubert
classes in Gra,b × Grb,m. In general, Schubert calculus on the flag variety behaves
very differently than that on the product of Grassmannians, where it is governed by
Littlewood-Richardson rules. However, in certain cases, these two products coincide.
We prove the following equality:

Proposition A.5 Let (α1, β1), . . . , (αn, βn) be n pairs of partitions indexing Schu-
bert classes of the flag variety Fla,b;m. Suppose that

∑n
i=1 |αi | + |βi | = a(b − a) +

b(m − b). If we have the inequality
∑n

i=1 |αi | ≤ a(b − a), then

∫

Fla,b;m

n∏

i=1

σ(αi ,βi ) =
∫

Gra,b

n∏

i=1

σαi

∫

Grb,m

n∏

i=1

σβi . (26)

In particular, if
∑n

i=1 |αi | < a(b − a), this quantity is zero.

In the case when
∑ |αi | = a(b − a), this recovers [37, Thm 1.1] for Fla,b;m; see

also [36] for related results.
In order to prove this proposition, we use both the Schubert basis as well as an

alternative basis whose product rules are described in [23] (see also [15, Thm 3.1]).
The alternative basis is indexed by the same pairs of partitions as the Schubert basis;
the element corresponding to a pair (α, β) is sα,β := σα,∅σ∅,β , which is a product of
Schubert classes. This class can also be expressed as a product of Schur polynomials
in the Chern roots of the tautological bundles of the flag variety. We first state and
prove an auxiliary result about the expansion of sα,β in the Schubert basis.

Lemma A.6 Let (α, β) be a pair of partitions indexing a Schubert classes of the flag
variety Fla,b;m. Then

sα,β = σα,β +
∑

(μ,ν),|μ|<|α|
cμ,νσμ,ν for some positive integers cμ,ν , and (27)

σα,β = sα,β +
∑

(μ,ν),|μ|<|α|
dμ,νsμ,ν for some integers dμ,ν . (28)

It follows that the top degree classes in both bases agree:

σα,β = sα,β when (α, β) = (ab−a, bm−b). (29)
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Proof Note that as sα,β = σα,∅σ∅,β , the right-hand side is simply the expansion in
the Schubert basis of this product of two Schubert classes. Both terms in the product
can be pulled back from Grassmannians. In particular, we can apply Proposition 2.3
of [35] to see that if σμ,ν appears in the product of σα,∅σ∅,β with non-zero coefficient,
then the associated permutation wμ,ν satisfies the following condition: for all i <

j ≤ b, if wα,∅(i) < wα,∅(j) then wμ,ν(i) < wμ,ν(j).
Thus the set {i < j ≤ b | wμ,ν(i) > wμ,ν(j)}, which is precisely the inver-

sion set of wμ,∅, is a subset of the inversion set of wα,∅. In particular |μ| ≤ |α|, or
equivalently, |ν| ≥ |β|. To complete the proof the lemma, we need to show that if
|μ| = |α|, then μ = α, ν = β, and that the coefficient in the product of σα,β is 1.
Note that {i < j ≤ b | wμ,ν(i) > wμ,ν(j)} is precisely the inversion set of α, so
if |μ| = |α|, then wμ,∅ and wα,∅ have the same inversion set. As the inversion set
completely determines the permutation, it follows that α = μ.

To see that ν = β, note that Proposition 2.3 of [35] also implies that if a < j , then
wμ,ν(j) ≤ w∅,β(j). Since for b < j , wμ,ν(j) = w∅,ν(j), it follows that

w∅,ν(j) ≤ w∅,β(j).

This implies that β ⊆ ν. Since we have assumed that |ν| = |β|, in fact β = ν. We
have shown that

sα,β = cσα,β +
∑

(μ,ν),|μ|<|α|
cμ,νσμ,ν

for some constant c. Proposition 2.5 of [35] implies that c = 1. Repeatedly applying
(27) gives (28). Note that the coefficients dμ,ν in (28). may not be positive. The
equality (29) follows from the two statements.

Proof of Proposition A.5 Let (α1, β1), . . . , (αn, βn) be n pairs of partitions indexing
Schubert classes in Fla,b;m.

We first state some facts from [23] about multiplying in the alternative basis.
For sα1,β1 and sα2,β2 two basis elements, by the rim-hook removal rule of [23], the
product is governed by Littlewood-Richardson rules and rim-hook removals:

sα1,β1sα2,β2 =
∑

|μ|=|α1|+|α2|
c
μ

α1,α2c
ν
β1,β2 sμ,ν +

∑

|μ|=|α1|+|α2|
aμ,ν sμ,ν

for some integers aμ,ν , where both sums are over (μ, ν) satisfying |μ| + |ν| =
|α1| + |α2| + |β1| + |β2|. Proceeding inductively and using properties of generalized
Littlewood-Richardson coefficients, one can show

n∏

i=1

sαi ,βi =
∑

|μ|=∑ |αi |

n∏

i=1

c
μ
α•cν

β• sμ,ν +
∑

|μ|<∑ |αi |
ãμ,ν sμ,ν (30)

for some integers ãμ,ν , where both sums are over (μ, ν) satisfying |μ| + |ν| =∑ |αi | + |βi |. Note that no summands appear where |μ| >
∑ |αi |, or equivalently

where |ν| <
∑ |βi |.
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By (27), (28) and (30), we obtain

n∏

i=1

σαi,βi =
∑

|μ|=∑ |αi |
c
μ
α•cν

β• sμ,ν +
∑

|μ|<∑ |αi |
d̃μ,ν sμ,ν (31)

for some integers d̃μ,ν , where both sums are over (μ, ν) satisfying |μ| + |ν| =∑ |αi | + |βi |.
When

∑ |αi |+|βi | = a(b−a)+b(m−b), the intersection number in the statement
of the proposition can be read from (31) as the coefficient of the top degree class,
namely of σ(ab−a,bm−b) = s(ab−a,bm−b) (see (29)). By assumption,

∑ |αi | ≤ a(b − a),
so this top degree class does not appear in the second summand of (31), and therefore,

the intersection number is equal to c
(ab−a)

α• c
(bm−b)
β• , which is in turn equal to the desired

product of intersection numbers. The final statement of the proposition follows from

the fact that c
(ab−a)

α• = 0 if
∑ |αi | < a(b − a).

Appendix B: F-Curves and Their Intersections with Divisors

In our analysis of GW divisors and the first Chern classes of critical level CB bundles,
we compare their intersections with a set of curves in M0,n, defined next.

Definition B.1 An F -curve on Mg,n is the numerical equivalence class of an
irreducible component of a one-dimensional component of the boundary.

F -Curves on M0,n are parametrized by partitions [n] = {1, . . . , n} = N1 ∪ N2 ∪
N3 ∪ N4 as follows. For i = 1, . . . , 4, let XNi

= (P1, P •
Ni

∪ α′
i ) ∈ M0,|Ni |+1, be four

fixed points. Define a map M0,4 → M0,n by sending a point X = (C, α•) ∈ M0,4
to the n-pointed curve obtained by gluing the curve XNi

to X by attaching αi to
the point α′

i for each i ∈ {1, . . . , 4}. The F -curve, denoted FN1N2N3N4 , is defined
to be the numerical equivalence class of the image of this map. The F -curves span
H2(M0,n,Q), and are conjectured to span the extremal rays of the cone of curves on
Mg,n. This is known for g = 0 and n ≤ 7, and for n = 0 and g ≤ 24 [21, 24, 26].

Each component of the boundary is the surjective image of a morphism from a
product of moduli spaces. To compute the intersection of the divisor with an F -
curve, one pulls back the first Chern classes along these clutching morphisms: For
N1 ⊂ {1, . . . , n} a nonempty set, let XN1 = (P1, P •

N1
∪αN1) ∈ M0,|N1|+1 be a smooth

|N1| + 1-pointed rational curve, and define a morphism

M0,|NC
1 |+1

FN1� �N1 ↪→ M0,n, (32)

attaching XN1 to a point (C, P •
NC

1
∪ α′

N1
) ∈ M0,|NC

1 |+1 by gluing αN1 to α′
N1

.
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Lemma B.2 Let [n] = N1 ∪ N2 ∪ N3 ∪ N4 define an F -curve FN1,N2,N3,N4 . Then

c1(V(slr+1, λ
•, l)) · FN1,N2,N3,N4

=
∑

ν•
c1(V(slr+1, ν

•, l))
∏

1≤j≤4

Rk(V(slr+1, λ(Nj )
• ∪ (νj )∗, l)), (33)

where one sums over 4-tuples ν• = {νj }4
j=1 of partitions of Grr,r+l , and (νj )∗ is

defined to be the complement of νj in the (r + 1) × ν
j

1 rectangle. Each summand is
zero unless

|νi | =
∑

j∈Ni

|λj |, for all i ∈ {1, 2, 3, 4}. (34)

The formula (33) is well known (see [8, 16, 34]). For completeness, we provide
a proof, which also establishes (34). This uses factorization, and the observation,
known for some time, that boundary restrictions of bundles at the critical level remain
at or above the critical level.

Proof To compute the intersection of c1(V(g, λ•, l)) with FN1,N2,N3,N4 , one pulls
back the divisor along a composition of clutching maps as depicted in (32). First,
pulling back along FN1 , we apply the factorization theorem [40], to obtain

F ∗
N1

c1(V(slr+1, λ
•, l))

= ⊕ν1c1(V(slr+1, ν
1 ∪ λ(NC

1 )•, l))Rk(V(slr+1, (ν
1)∗ ∪ λ(N1)

•, l)), (35)

where here we sum over partitions ν1 in an r × l rectangle. In particular, to have
bundles with nontrivial ranks and Chern classes, r + 1 divides the total area of the
partitions defining the modules for each bundle. In other words:

∑

j∈Nc
1

|λj |+ |ν1| = (r + 1)(l + s1), and
∑

j∈N1

|λj |+ |(ν1)∗| = (r + 1)(l + s′
1). (36)

From
∑

i∈[n] |λi | = (r + 1)(l + 1) and |ν1| + |(ν1)∗| = (r + 1)ν1
1 , we obtain

|ν1| =
∑

i∈N1

|λi | + (r + 1)(s1 − 1)

and ν1
1 = l + s1 + s′

1 − 1 ≤ l so that s1 + s′
1 ≤ 1.

We wish to show that each summand of (35) is zero unless |ν1| = ∑
i∈N1

|λi |. If
|ν1| <

∑
i∈N1

|λi |, then s1 < 1, and the first Chern class component of the summand
is 0. Note that if |ν1| = ∑

i∈N1
|λi |, then s1 = 1, and the first Chern class is at the

critical level.
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It remains to consider the summand in (35) when |ν1| >
∑

i∈N1
|λi | and s1 > 1.

We will show that the rank component of the summand is zero:

R1 = Rk(V(slr+1, (ν
1)∗ ∪ λ(N1)

•, l)) = 0. (37)

By Witten’s Dictionary, we may use a classical cohomology computation for R1 since

|(ν1)∗| +
∑

i∈N1

|λi | = (r + 1)(l + 1 − s1) < (r + 1)(l).

With λ(N1) = {γ 1, . . . , γ k}, then R1 is the coefficient of σ((l+1−s1)
r+1) in the product

σγ 1 · σγ 2 · · · · · σγ k · σ(ν1)∗ ∈ H ∗Grr+1,r+1+l+s′
1
.

In this case, ν1
1 = l + s1 + s′

1 − 1 > l + s′
1 and (ν1)∗ has width ν1

1 , so its cohomology
class and hence the intersection is zero.

Since [n] = N1 ∪ N2 ∪ N3 ∪ N4 is a partition into four nonempty sets, N2 ⊂ NC
1 .

For XN2 = (P1, P •
N2

, αN2) a point in M0,|N2|+1, we can define a clutching map

M0,(|(N1∪N2)
C |+2

FN1,N2� �N2 ∩ �N1 ↪→ M0,n, (38)

attaching the two points XN1 = (P1, P •
N1

, αN1), and XN2 = (P1, P •
N2

, αN2) to the
point

(C, P •
|(N1∪N2)

C | ∪ α′
N1

∪ α′
N2

) ∈ M0,|(N1∪N2)
C |+2

by identifying αN2 and α′
N2

. Factorization gives F ∗
N1,N2

(c1(V(slr+1, λ
•, l)) as a sum

of divisors c1(V(slr+1, ν
1 ∪ ν2 ∪ λ((N1 ∪ N2)

C)•, l)) that are at or above the critical
level, with coefficients

Rk(V(slr+1, (ν
1)∗ ∪ λ(N1)

•, l))Rk(V(slr+1, (ν
2)∗ ∪ λ(N2)

•, l)),
parametrized by partitions ν1 and ν2. If both |ν1| = ∑

i∈N1
|λi | and |ν2| =

∑
i∈N2

|λi |, then the Chern class is at the critical level. For this one checks
F ∗

N1,N2
(c1(V(slr+1, λ

•, l)) is a composition of clutching maps, and makes an anal-
ogous argument. Iterating, since FN1,N2,N3,N4 represents the numerical equivalence
class of a one-dimensional component of �N4 ∩�N3 ∩�N2 ∩�N1 , there is a clutching
map

M0,4
FN•� FN1,N2,N3,N4 ↪→ M0,n, (39)

attaching four fixed points XNi
= (P1, P •

Ni
∪ αNi ) ∈ M0,|Ni |+1, to an arbi-

trary point (C, Q•) ∈ M0,4 by identifying αNi and Qi . By Factorization,
F ∗

N•(c1(V(slr+1, λ
•, l)) is a sum of divisors c1(V(slr+1, ν

1 ∪ ν2 ∪ ν3 ∪ ν4, l)) that
are at or above the critical level, with coefficients

�4
j=1Rk(V(slr+1, (ν

j )∗ ∪ λ(Nj )
•, l)).

If |νj | = ∑
i∈Nj

|λi |, then the Chern class is at the critical level.

Remark B.3 It is well known that if
∑n

i=1 |λi | is not divisible by r + 1, then the
rank of the bundle V(slr+1, λ•, l) is zero. This follows by induction on n using the
factorization theorem with base cases n ∈ {1, 2, 3}. For n ∈ {1, 2}, the assertion is
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given by the fusion rules [4, Cor 4.4]. For n = 3, there are different ways to obtain
the result. For instance, one can also use the fusion rules, as is done in [1, Prop 3.4.]
to show the claim for sl2 (see [4, §5]), although there isn’t a closed form for these
and one has to work them out for each r . Alternatively, one may use [40, Proposi-
tion 3.23], in which it is shown that there is a surjection from the constant bundle
A(slr+1, {λ1, λ2, λ3}, l), determined by the slr+1-modules given by the partitions λi

onto V(slr+1, {λ1, λ2, λ3}, l). Since defined on M0,3, which is isomorphic to a point,
these are vector spaces. The vector space A(slr+1, {λ1, λ2, λ3}, l) is isomorphic to
the tensor product of the highest weight slr+1-modules determined by the partitions
λi [41], which can be shown to be trivial unless r + 1 divides

∑3
i=1 |λi |.
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