
On factorization & vector bundles
of conformal blocks
from vertex algebras

Angela Gibney

Rutgers University, New Brunswick

2020



This work was done with with

Chiara Damiolini and Nicola Tarasca.



We consider vector bundles of coinvariants: Each
fiber is a vector space of coinvariants, derived from
a pointed curve and a collection of “nice" modules
over a certain type of conformal vertex algebra.

The news is that the vector spaces of coinvariants
satisfy the factorization property. This fact is one of
the crucial ingredients used to show that the vector
spaces fit together to form vector bundles. In fact,
these bundles owe many of their nice features to the
factorization property. I will list some of these
properties here today.



Vector bundles of coinvariants onMg,n

Vg(V ;M•)

��

Mg,n

Vg(V ;M•)(C,P•)

��
(C,P•)

fibers are vector spaces of coinvariants

Vg(V ;M•)(C,P•) := [M•]L(C,P•)
.



Vector spaces of coinvariants are
quotients

For
I (C,P•) a stable n-pointed curve; and
I M1, . . . ,Mn finitely generated admissible modules

over a conformal vertex algebra V .

the vector space of coinvariants

[M•]L(C,P•)
= M•/L(C,P•)(V ) ·M•

is the largest quotient of the tensor product

M• = ⊗n
i=1Mi

by the action of a Lie algebra

L(C,P•)(V ).
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To define these quotients, even informally as I will,
one must describe the Lie algebra L(C,P•)(V ), and
how it acts on the tensor product of the modules
M• = ⊗n

i=1M i .

There are two Lie algebras that act.

Surprisingly, their coinvariants are isomorphic [DGT2].

Before defining these quotients, and the notions that
go into them, I briefly state our main results.



Main Theorem (DGT I, DGT 2, DGT 3)
For M1, . . ., Mn finitely generated admissible modules
over a conformal vertex algebra such that V is

(a) of CFT type, (b) rational, and (c) C2-cofinite,

then vector spaces of coinvariants

1. are finite dimensional;

2. satisfy factorization; and

3. are fibers of a vector bundle Vg(V ;M•) onMg,n.

4. Vg(V ;M•) carries a projectively flat connection.

5. The Chern character of Vg(V ;M•) gives rise to a
semi-simple cohomological field theory.



We call a conformal vertex algebra V satisfying

(a) of CFT type, (b) rational, and (c) C2-cofinite,

a vertex algebra of CohFT-type.

I’ll come back to this later in the talk.



Our results extend prior work for:

I affine Lie algebras and generalizations;
I the Virasoro, and generalizations;

As I’ll illustrate, we obtain a number of new
examples.



Results for sheaves from integrable
modules over affine Lie algebras

[1987] Tsuchiya and Kanie: (P1,P•) with coordinates.

[1991] Tsuchiya, Ueno, and Yamada: coordinatized
(C,P•) ∈Mg,n; sheaves satisfy (1), (2), (3), & (4).

[1993] Tsuchimoto: the vector bundles and the
connection descend toMg,n.

[2010] Fakhruddin: glob. gen. and first Chern class.

[2015] Marian, Oprea, Pandharipande: first Chern
class in the tautological ring (different construction).

[2017] Building on MOP, Marian, Oprea,
Pandharipande, Pixton, and Zvonkine show (5).



I’m leaving out a lot of work on these bundles (eg
results about the connection and their classes,
including the Verlinde formula).

Following MOP, to save space on slides, I will refer to
them as Verlinde bundles.



Zhu’s coinvariants (generalizing [TUY])
[1994] Zhu defined coinvariants and conjectured
factorization for quasi primary generated (qpg) V.

[2005] Abe and Nagatomo proved (1)
for C smooth, and qpg V satisfying (a) & (c).

[2005] Nagatomo and Tsuchiya (2005) show (2) & (3)
for g = 0, V ∼= V ′, different hypothesis, extending
Zhu’s coinvariants for g = 0 curves with singularities.

[2005] Huang showed (2)
for g ∈ {0, 1}, V ∼= V ′ satisfying (a),(b) & (c).

[2019] Codogni showed (2) for all g, for holomorphic
V ∼= V ′ satisfying (a),(b) & (c).

Notes: (1) If V ∼= V ′, then V is qpg. (2) Zhu’s
coinvariants generalize those studied by TUY.



Notes:

(1) I haven’t said enough to define qpg, but I will say
that a VOA of CFT type is qpg if and only if V ∼= V ′. I
will mention this later when I talk about the Lie
algebras themselves [FHL 1993], [DLM 1996, 1997]. (2)

Just as for the Verlinde bundles, I have left out a ton
of work about these, especially with regard to
conformal field theory and the important results of
my colleague Yi Zhi Huang.



Virasoro & FBZ coinvariants
[1991] Beilinson, Feigin, and Mazur construct
coinvariants and prove factorization for
coordinatized curves and the Virasoro VOA.

[2004] Frenkel and BenZvi define sheaves of
coinvariants for coordinatized points (C,P•) ∈Mg,n

and modules over conformal vertex algebras,
generalizing [BFM]. They show sheaves support a
projectively flat connection and mention that
factorization is expected if V is rational.

[2019] We extend coinvariants (and the connection)
to stable curves, showing independent of
coordinates [DGT1]. We prove factorization, and
using factorization with the connection, show the
sheaves are locally free [DGT2].



New Examples
Vertex algebras of CohFT-type include:

I Positive definite even lattice VOAs VL;
I The moonshine module V \;
I Parafermions; and
I certain W-algebras;

New VOAs of CohFT-type from old ones:
1. tensor products: V 1, . . . ,V k of CohFT type then

V 1 ⊗ · · ·V k is too;
2. commutants/cosets; and
3. orbifolds.

The two latter types are more complicated.



Commutant and coset examples

Commutant or Coset
For U a vertex subalgebra of V , conjecturally, if U
and V are both of CohFT-type, then ComV (U) is also
of CohFT-type.

Orbifold Let G ⊂ Aut(V ). The orbifold vertex algebra
V G consists of the fixed points of G in V . If V is of
CohFT-type, G = Aut(V ) is a finite-dimensional
algebraic group. If G is also solvable, then V G will
also be of CohFT-type. Conjecturally, V G is always of
CohFT-type.



All the examples we know are self-contragredient.

Question
If V is of CohFT-type, is V ∼= V ′?

The Chiral/FBZ Lie algebra is defined for any
conformal V, whereas Zhu’s Lie algebra only for V
qpg. We have proved factorization in case V is of
CohFT type, which is presumably in a more general
setting than Zhu conjectured.

For V of CFT-type then V ∼= V ′ if and only if V is qpg
(references [FHL, and DLM 1996, 1997]). A yes to this
question implies if V CohFT-type then V is qpg. In
particular, factorization would hold exactly where
Zhu indicated it should.
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OK, they have good properties, but why
study these vector bundles?

Here are three reasons, based on what is known to
be true for the Verlinde bundles:

1. They may provide new examples of rational
conformal field theories.

2. They give rise to elements in the important
tautological ring R∗(Mg,n), and therefore may be
useful in testing Pixton’s conjectures.

3. They may be interesting in terms of the birational
geometry of the moduli space of curves.
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A little bit about the tautological ring

The tautological ring is a subring of the Chow ring
generated by “tautological classes"

Defined with generators in the ’80s, Mumford
suggested finding all relations.

I Faber and Zagier did so forMg [FZ ].

I Pixton [P] conjectured relations generalizing [FZ].

I Work of Pandharipande, Pixton, Zvonkine [2014]
and of Janda [2015] give that classes obtained
from the Verlinde bundles and CohFTs of a similar
nature obey Pixton’s relations (PPZ 2014).



Chern classes of the bundles Vg(V ;M•) lie in the
tautological ring.

Question
Do they obey Pixton’s relations?



Global generation
If Vg(V ;M•) is globally generated
=⇒ c1(Vg(V ;M•)) is base point free.

If c1(Vg(V ;M•)) is base point free, it follows from
[GKM, 2003] that one must have that certain
coefficients in the first Chern class are all
nonnegative. These coefficients are invariants of the
vertex algebra and of the modules used to define
the bundles. This nonnegativity condition doesn’t
hold for all the bundles we consider but it does hold
for Verlinde bundles [Fakhruddin, 2011].

Question
Can one specify conditions so that the bundles
Vg(V ;M•) are generated by their global sections?

One guess is that V should be unitary.



For the remainder of the talk I will briefly describe the
terms used to define coinvariants, state the
factorization theorem, and the idea of the proof.



Brief incomplete definition (mainly for
notation)

A conformal vertex algebra is a tuple(
V ,1V , ω,Y (·, z)

)
, where

I V = ⊕i∈NVi is a C-vector space, with dimVi <∞;
I 1V ∈ V0 (the vacuum vector),
I ω ∈ V2 (the conformal vector);
I Y (·, z) : V → End(V )[[z, z−1]] is a linear function

assigning to every element A ∈ V the vertex
operator

Y (A, z) :=
∑
i∈Z

A(i)z−i−1.

The datum
(
V ,1V , ω,Y (·, z)

)
, referred to as V , must

satisfy a number of axioms.



To give an example, the conformal structure comes
from coefficients of the vertex operators

Y (ω, z) =
∑
i∈Z

ω(i)z−i−1.

Endomorphisms Lp := ω(p+1), are subject to the
Virasoro relations, giving the action of a Virasoro Lie
algebra on V[
ω(p+1), ω(q+1)

]
= (p−q)ω(p+q+1)+

c
12

δp+q,0 (p3−p) idV .

Here c ∈ C is the central charge of V . Moreover:

ω(1)|Vi = i · idV , for all i, and Y
(
ω(0)A, z

)
= ∂zY (A, z).



Admissible V-modules

For V a conformal vertex algebra, an admissible
V-module is a pair (M,Y M( − , z)) where M is an
N-graded vector space,

Y M(·, z) : V → End(M)[[z, z−1]],

A 7→ Y M(A, z) :=
∑
i∈Z

AM
(i)z
−i−1,

and for A ∈ Vd ,

AM
(i)Mj ⊂ Mj+d−i−1.

This pair must satisfy a number of conditions
analogous to the VOA axioms.
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If V is a conformal vertex algebra such that

(a) V is of CFT type

V ∼=
⊕

i∈N Vi , and V0
∼= C;

(b) V is rational

finitely generated admissible modules
are completely reducible;

(c) V is C2-cofinite

dim(V/C2(V )) <∞,
C2(V ) = SpanC{A(−2)B : A,B ∈ V}.

then we say V is of CohFT-type,



Vertex algebras of CohFT-type have some very good
properties, that make our jobs easier.

I If V is rational (or V is C2-cofinite) there are just
finitely many simple modules.

I If V is rational and C2-cofinite, the simple
admissible modules are the same as the simple
ordinary modules [DLM, 1997 Remark 2.4].

I Ordinary modules are extraordinary, satisfying
additional finiteness conditions, including

1. graded pieces Mλ are finite dimensional
2. for fixed λ, one has Mλ+` = 0 for ` >> 0.



We next define the Lie algebras and their actions on
modules. To describe the actions we first introduce
the “ancillary Lie algebra".



Ancillary Lie algebra

Given a pointed curve (C,P), and t a local
parameter on C at P, let

LP(V ) = V ⊗ C((t))/Im∇,

where ∇ : V ⊗ C((t)) −→ V ⊗ C((t)), is the map

A⊗ f 7→ L−1A⊗ f + A⊗ d
dt

f .
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Generators and relations

LP(V ) has generators

A⊗ t j := A[j] ∈ LP(V ) = V ⊗ C((t))/Im∇,

and relations

[A[j],B[k]] =
∑
`≥0

(
j
`

)
(A(`)(B))[j+k−`].



LP(V ) acts on ⊗iM i

For M i a V -module “at Pi ∈ C”

n⊕
i=1

LPi (V )×⊗iM i → ⊗iM i ,

((. . . ,A[kj ], . . .), (m1 ⊗ . . .⊗mn)) 7→

n∑
j=1

· · · ⊗mj−1 ⊗ AM j

kj
(mj)⊗mj+1 ⊗ · · · .



The vertex algebra bundle

To give an algebro-geometric view of LP(V ), we will
use the vertex algebra bundle

VC → C,

defined for a smooth curve C by Frenkel and BenZvi,
and extended in [DGT1] to stable curves with
singularities. The fiber over a a point P ∈ C is
(non-canonically) isomorphic to V (which is an
infinite object, so this is non-standard).



One can show that the bundle supports a
connection

∇ : VC → VC ⊗ ωC.

and

Theorem (FBZ, DGT1)
For U = C \ ∪Pi affine

(VC ⊗ ωC) |U ∼=
⊕

j

Vj ⊗ H0(U, ω1−k
C ).

(This result is only important if later after my talk, you
ask about the definition of Zhu’s algebra).



Algebro-geometric view of LP(V )

For the punctured disc

DX
p = Spec(Frac(OC,p/mC,p)),

one has that:

Theorem (FBZ, DGT 1)

LP(V ) ∼= H0(Dx
p,VC ⊗ ωC/Im∇).



FBZ/Chiral Lie algebra

Given a stable pointed curve (C,P•), set

L(C,P•)(V ) := H0(C \ ∪Pi ,VC ⊗ ωC/Im∇).

One can show that the restriction

H0(C \ ∪Pi ,VC ⊗ ωC/Im∇) −→
⊕

j

H0(Dx
Pj
,VC ⊗ ωC/Im∇),

σ 7→ (σ|DX
P1
, . . . , σ|DX

Pn
)

is a map of Lie algebras.



Diagonal action by restriction.

L(C,P•)(V )×⊗iM i → ⊗iM i ,

defined by

(σ,m1 ⊗ · · · ⊗mn) 7→
n∑

j=1

· · · ⊗mj−1 ⊗ σ|DX
Pj
·mj ⊗ · · · .

The vector space of coinvariants

Vg(V ;M•)(C,P•) := [M•]L(C,P•)(V ).

is the largest quotient of the tensor product ⊗iM i on
which L(C,P•)(V ) acts trivially.



Factorization

Factorization enables one to transform fibers of the
bundle to fibers defined on simpler curves. This leads
to recursions, and allows one to make inductive
arguments. This is the crucial ingredient allowing
ranks of such bundles, and their Chern characters to
be given explicitly.
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Theorem (Factorization)
For V a conformal vertex algebra of CohFT-type,
then with the notation as in the picture

V (V ;M•)(C,P•)
∼=
⊕

W∈W

V (V ;M• ⊗W ⊗W ′)(C̃,P•tQ•) .

ForW all simple V-modules, the normalization
C̃ → C, Q+, Q− ∈ C̃ preimages of a node Q, and
Q• = (Q+,Q−).



For a curve with a separating node:

V (V ;M• ⊗W ⊗W ′)
(C̃,P•tQ•)

∼= V
(
V ;M•

+ ⊗W
)

X+ ⊗ V
(
V ;M•

− ⊗W ′)
X−

where X± = (C±,P±• tQ±), and M•
± are the modules

at the P±• on C±.



The idea of the proof of factorization

Consider the normalization of a pointed curve C
with a non-separating node Q

The idea going back to TUY is to insert a trivial
module Z at the two points of C̃ lying over Q so
coinvariants remain the same (trivial modules don’t
effect coinvariants). This almost works.
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We obtain a diagram

[M• ⊗ Z ]L
(C̃,P•∪Q•)

(V )

��

[M•]L
(C̃,P•)

(V ,D)

��

hoo

[M• ⊗ Z ]L
(C̃,P•∪Q•)

∼= // [M•]L(C,P•)

.

Finite dimensionality of the fibers is important to our
argument. Taking duals, we work with vector spaces
of conformal blocks via correlation functions.



The End (thank you).



A question somebody might ask

Question
How does one define Zhu’s Lie algebra?



As mentioned earlier, in order to define vector
spaces of coinvariants, one could have used Zhu’s
Lie algebra, as long as V is quasi-primary generated.

A quasi-primary vector is an element A ∈ V such that
L1A = 0. One says that V is quasi-primary generated
(qpg) if V is generated by quasi-primary vectors.

V is qpg if and only if L1V1 = 0 [DLM 1996].
If V is qpg then it is easier to define maps involving V
as local charts patch together more easily. This
comes into the definition of Zhu’s Lie algebra, which
is defined as the image of a map which is a Lie
algebra map in case V is qpg.



In particular, we set

gC\P•(V ) := ϕg

(
⊕k≥0Vk ⊗ H0 (C \ P•, ω⊗1−k

C

))
where

ϕg : ⊕k≥0 Vk ⊗ H0 (C \ P•, ω⊗1−k
C

)
→ ⊕n

i=1LPi (V )

is the map induced by

B ⊗ µ 7→
(
Resti=0 Y [B, ti ]µPi (dti)

k)
i=1,...,n .



In the previous slide, ti is a formal coordinate at the
point Pi , Y [B, ti ] :=

∑
k∈Z B[k]t−k−1

i , and µPi is the Laurent
series expansion of µ at Pi , the image of µ via

H0 (C \ P•, ω⊗1−k
C

)
→ H0

(
D×Pi

, ω⊗1−k
C

)
'ti C((ti))(dti)

1−k .

When V is qpg with V0
∼= C, Zhu shows that gC\P•(V ) is

a Lie subalgebra of L(V )⊕n.


