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Abstract. Basepoint free cycles on the moduli space M0,n of stable n-pointed rational curves,
defined using Gromov-Witten invariants of smooth projective homogeneous spaces are introduced
and studied. Intersection formulas to find classes are given. Gromov-Witten divisors for projective
space are shown equivalent to conformal blocks divisors for type A at level one.

In this work we use the Gromov-Witten theory of smooth projective homogeneous spaces to
produce a seemingly rich source of effective cycles of arbitrary codimension on the moduli space
M0,n of stable n-pointed rational curves. These classes are nef and basepoint free, and so for
instance in codimension one their associated rational maps are in fact morphisms.

One application of this construction is a surprising identification with Chern classes of vector
bundles of conformal blocks, also known in the literature as bundles of covacua: In Theorem 3.1
we show that Gromov-Witten divisor classes for Pr = Gr(1, r + 1) coincide with conformal blocks
divisors for slr+1 at level one. We have noticed in examples, and in terms of parameters, there
may be a more general connection between Gromov-Witten divisors for Grassmannians Gr(`, r+ `)
and conformal blocks divisors for slr+1 at higher levels `. In Question 3.3 we propose a specific
relationship between divisor classes.

Theorem 3.1 can be seen as a generalization of the type of pairing in Witten’s theorem, relating
quantum cohomology of Grassmannians to ranks of conformal blocks bundles in type A, and geomet-
ric methods of producing invariants from Schubert calculus (see the survey [Bel10], and recent work
[RZ18]). Theorem 3.1 relates two families of classes defined from seemingly different perspectives:
one enumerative, and the other in terms of the representation theory of affine Lie algebras. This
echoes correspondences between classes arising in other contexts (eg. [PP17,MNOP06,GV98]).

The Gromov-Witten type loci we consider here have interesting properties from the perspective
of natural cones of positive cycles, and in particular are always basepoint free. This can be seen
intuitively from their construction. Informally, following [KM94, FP97], they consist of points in
M0,n which are the images of pre-stable curves admitting a stable map of some particular degree to
a smooth projective homogeneous variety and such that the images of the marked points lie on some
fixed Schubert subvarieties in general position1. Since the target variety is homogeneous, by moving
the Schubert varieties via the group action, one can show using Kleiman’s transversality theorem
that the associated linear system does not have a base locus.

Not only do they reside in the nef cone, but one can give general criteria indicating when classes
lie on extremal faces (eg see Propositions 4.4, 4.5, where we have done this for odd quadrics). As
an application, we give an example in Section 4.3 of a Gromov-Witten divisor defined from an odd
quadric that spans an extremal ray of the nef cone of M0,n for all even n. We have demonstrated
in examples for projective space, and even quadrics in low rank that there are are Gromov-Witten
classes that lie on extremal faces of the nef cone not known to be spanned by conformal blocks divisors
(see Sections 3.2 and 4.5). This illustrates that the Gromov-Witten classes are more amenable to

1All definitions, and requirements are explained in Section 0.1.
1



2 P. BELKALE AND A. GIBNEY

computational investigation than conformal blocks divisors, where the rank of the bundle can slow
a computer down.

Gromov-Witten divisors have other advantages over conformal blocks divisors: With no known
“modular” description for them, it is difficult to explicitly describe conformal blocks divisors in
a linear system. In contrast, the Gromov-Witten divisors parameterize loci, and properties of
the associated morphisms should therefore be more accessible. So while the computational edge
allows one to see Gromov-Witten divisors that are not known to be given by Chern classes of
conformal blocks bundles, there are benefits to finding identities between Gromov-Witten divisors
and conformal blocks divisors, as the former add more to the picture.

We show in Proposition 1.4 that the Gromov-Witten type loci defined here satisfy a more robust
and functorial basepoint free condition, closed under intersection products up to rational equivalence,
which we call rational strongly basepoint free after Fulger and Lehmann [FL17] (see Definition 1.1).
We often call these strongly basepoint free. In Lemma 1.3, we verify that in this context, the
pushforward of strongly basepoint free classes along flat maps are strongly basepoint free. Since
forgetful maps M0,n → M0,m with m < n are flat, one obtains basepoint free classes of codimension

k on M0,n by pushing forward strongly basepoint free classes of higher codimension (like the GW
classes). So for example, higher codimension classes are useful even if one is only interested in
divisors.

Underlying these results is the explicit determination of cycle classes, which is done by intersecting
with a dual basis. For instance, a divisor class on M0,n is computed by intersecting with boundary
curves. Expressions for such an intersection are given in Propositions 2.2 and 2.3. In practice, to
compute the classes, one needs (1) The small quantum cohomology rings of the homogeneous spaces
X, and (2) Four point big quantum cohomology numbers (where the underlying pointed curve is
not held fixed in the enumerative problem).

In case the rational cohomology of X is generated by divisors, as for X = G/B with B a Borel
subgroup, and G a semisimple algebraic group, the formula in Proposition 2.2 can be simplified
considerably. In particular, as is shown in Proposition 2.5, it follows from [KM94] that four point
big quantum cohomology numbers can be reduced recursively to the computation of small quantum
cohomology numbers.

It would of course be very interesting to characterize images of maps given by Gromov-Witten
divisors. In Section 5 two questions for classes defined from Gromov-Witten invariants for non-
homogeneous spaces are considered.

0.1. Gromov-Witten theory preliminaries. We work entirely over the field of complex numbers.
The set of all stable maps of genus g and degree β ∈ H2(X), with n marked points to a normal
variety X forms a (Deligne-Mumford) moduli stack Mg,n(X,β). Stable maps are tuples ((C, ~p), f),
where (C, ~p) is a pre-stable curve and f is a stable map from (C, ~p) to X. A pre-stable curve (C, ~p)
is a connected, complete, and reduced curve C of genus g, with at worst nodal singularities, and
~p = (p1, . . . , pn) a finite collection of n smooth points on C. A stable map is any morphism from a
pre-stable curve to X such that there are only finitely many automorphisms of the map.

The virtual fundamental class [Mg,n(X,β)]virt ∈ Aν,Q(Mg,n(X,β)) is constructed in [BF97,LT98].

The virtual dimension of Mg,n(X,β) is

(0.1) ν = (3g − 3 + n) + c1(TX) · β + (1− g) dimX.

Definition 0.1. Consider homogeneous cycle classes α1, . . . , αn ∈ A∗(X), with αi ∈ A|αi|(X),
β ∈ H2(X) and c ≥ 0 ∈ Z. We say that a triple (X,β, ~α) satisfies the codimension c cycle



BASEPOINT FREE DIVISORS ON M0,n 3

condition in genus g if

(0.2) c =

n∑
i=1

|αi| − c1(TX) · β − (1− g) dimX.

Definition 0.2. Consider homogeneous cycle classes α1, . . . , αn ∈ A∗(X), with αi ∈ A|αi|(X),
β ∈ H2(X), and c ≥ 0 ∈ Z. Assume first that a triple (X,β, ~α) satisfies the codimension c cycle
condition in genus g. Let

(0.3) Ic,Xg,β,~α = η∗
( n∏
i=1

ev∗i (αi) ∩ [Mg,n(X,β)]virt
)
∈ AcQ(Mg,n)

where evi :Mg,n(X,β)→ X are the n evaluation maps, η :Mg,n(X,β)→Mg,n is the contraction

map, and αi ∈ A|αi|(X) for 1 ≤ i ≤ n.

If (X,β, ~α) does not satisfy the codimension c cycle condition in genus g, define Ic,Xg,β,~α = 0 ∈
AcQ(Mg,n).

We note that I0,Xg,β,~α ∈ Q = A0
Q(Mg,n). To ease notation, we will drop g in the notation, and when

the context is clear we write Ic,Xg,β,~α = Ic,Xβ,~α . We note that for

e = ν −
n∑
i=1

|αi| = (3g − 3 + n) + c1(TX) · β + (1− g) dimX −
n∑
i=1

|αi|,

one has

Ic,Xg,β,~α ∈ Ae,Q(Mg,n) = AcQ(Mg,n),

where of course c = dimMg,n − e.

Remark 0.3. In this work we assume that g = 0, and so we for the most part make the substitution

Ic,X0,β,~α = Ic,Xβ,~α . Except for in Section 5, we will assume that X is a homogeneous space. In [KP01]

it is shown that for homogeneous spaces X, the (coarse) moduli space for Mg,n(X,β) is connected,

for any genus g. Since in genus zero, for homogeneous X, the moduli space M0,n(X,β) is locally
the quotient of a nonsingular variety by a finite group, connectedness is equivalent to irreducibility,
in this case we may work with the plain fundamental class.

While we don’t use them, localization techniques are often employed to compute these invariants
in many cases, especially for homogeneous X [GP99].

0.2. Methods for obtaining basepoint free cycles on M0,n. An effective cycle α of codimension
k is basepoint free if the base locus of α is empty:

Definition 0.4. Let Z be an arbitrary variety. A cycle α ∈ Ak(Z) is basepoint free if for any point
z ∈ Z, there is an effective k-cycle β on Z, rationally equivalent to α, such that z is not in the
support of β.

The following methods are known for obtaining basepoint free cycle classes on M0,n:

(1) Chern classes (and Schur polynomials in the Chern classes) of conformal block bundles, also
called bundles of coinvariants (covacua) (see §1.3).

(2) Gromov-Witten classes Ic,Xβ,~α with X homogeneous (see Proposition 1.4).

(3) Algebraic operations in (1) and (2): intersection products, pushforwards under point-dropping
maps M0,n → M0,m, with m < n, and iterations of these (Proposition 1.4 and Lemma 1.3).
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Remark 0.5. Both Gromov-Witten classes and Chern characters of the conformal block bundles
give rise to cohomological field theories [KM94,Pan17], and it would be interesting to know how they
compare to one another.

1. Rational strongly basepoint freeness and GW-cycles

Here we define the notion of rational strongly basepoint free cycles, which is inspired by the one
given in [FL17] for strongly basepoint free cycles. In Lemma 1.3 we list a number of properties
satisfied by such strongly basepoint free cycles. In Proposition 1.4, we show that Gromov-Witten

cycles Ic,Xβ,~α with X homogeneous, are rationally strongly basepoint free. In Remark 1.7, we point

out that Schur polynomials in the Chern classes of V(g, ~λ, `) are rationally strongly basepoint free
on M0,n.

Recall that forgetful maps M0,n → M0,m with m < n are flat. Lemma 1.3 together with Propo-

sitions 1.4 and 1.7 therefore are a source of basepoint free cycles on the moduli spaces M0,n. In

particular, one obtains basepoint free classes on M0,n by pushing forward strongly basepoint free

classes of higher codimension on suitable M0,n′ with n′ > n.

1.1. Rational strongly basepoint free cycles.

Definition 1.1. A Chow cycle α ∈ Ak(X) of codimension k on an equidimensional possibly singular,
reducible, and/or disconnected projective variety X is said to be rationally strongly basepoint free
if there is a flat morphism s : U → X from an equidimensional quasi-projective scheme U and a
proper morphism p : U → W of relative dimension dimX − k, where W is a variety isomorphic
to an open subset of Am for a suitable m, such that each component of U surjects onto W , and
α = (s|Fp)∗[Fp], where Fp is a general fiber of p (hence α can be represented by an effective cycle).

Definition 1.2. Denote the semigroup of rationally strongly basepoint free classes of codimension
k on a (possibly singular) projective variety X by SBPFk(X) ⊆ Ak(X).

For rationally strongly basepoint free cycles, unlike for the strongly basepoint free cycles of [FL17],
one considers cycles up to rational equivalence, rather than up to numerical equivalence. In case
these are different, SBPFk(X) ⊆ Ak(X), one would not necessarily form the closure of the cones
generated by such classes. We have included the condition that W is an open subset of Am since we
are interested in rational equivalence. Moreover, one can drop the condition that each component
of U surjects onto W since we may replace W by a non-empty open subset, and U by the inverse
image of this open set.

Note that if Fpi , i = 1, 2 are two fibers then (s|Fpi)∗[Fpi ] coincide in Ak(X). Indeed, since p is

proper and U and W are quasi-projective, U sits inside a projective space P ×W over W . Let W
be a projective space containing W as an open subset. Form the closure U of U in the projective
variety P×W ×X. We have maps U → X (which may not be flat) and U →W . Over W ⊆W , U
and U coincide. Therefore Fpi are also fibers of U → W and are hence rationally equivalent. Now

U → X is proper and hence the pushforwards of the fibers agree in Chow groups.

Lemma 1.3. Rationally strongly basepoint free classes satisfy the following properties:

(a) A rationally strongly basepoint free class α ∈ SBPFk(Z) is basepoint free in the following
stronger sense: Given any irreducible subvariety V ⊂ Z (for example a point), there is a
effective cycle of class α which intersects V in no more than expected dimension (if the
intersection is non-empty).

(b) If Z is a smooth projective variety and α ∈ SBPFk(Z) and β ∈ SBPFk
′
(Z), then their

intersection product α · β ∈ SBPFk+k
′
(Z).
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(c) Let π : X → Y be a flat morphism of relative dimension d and α ∈ SBPFk(X), then
π∗α ∈ SBPFk−d(Y ).

(d) If X,Y are projective varieties, with Y smooth, and π : X → Y is a morphism, then
π∗ SBPFk(Y ) ⊆ SBPFk(X).

(e) The cycle class of a Schubert variety on a G/P is rationally strongly basepoint free. Therefore
all effective cycles on a homogeneous space are rationally strongly basepoint free.

(f) Let V be a globally generated vector bundle of rank n on a smooth projective variety X.
The Schur polynomial sλ = det(cλi+j−i)1≤i,j≤n in the Chern classes ci = ci(V) of V lies in

SBPF|λ|(X). Here |λ| =
∑
|λi| is the length of the partition λ = (λ1 ≥ · · · ≥ λn ≥ 0). See

[FL17, Def 3.2] and the proof of [FL17, Lemma 5.7].
(g) Basepoint free divisors on a smooth variety are rationally strongly basepoint free.

Proof. For (a), dim(V ∩ s(Fp)) ≤ dim(s−1(V )∩Fp), which in turn is the generic dimension of fibers
of s−1(V ) → W which is dimU − dimX + dimV − dimW = dimV − k. Part (b) follows from
[FL17, Corollary 5.6]. The W for the intersection cycle is the product of the W for α and β and is
hence rational. Part (c) follows from the same proof as [FL17, Lemma 5.3] (here the W is unchanged
for the pushforward): In particular, it isn’t necessary to assume that X or Y are smooth. For (d)
see [FL17, Lemma 5.4] (particularly the first paragraph of the proof there, the W is unchanged
here). In particular, one does not need smoothness of X. Property (e) follows by taking W = G/B
(which is rational), U the universal Schubert variety in G/B ×G/P , and X = G/P . Statement (f)
was proved for strongly basepoint free cycles (see [FL17, Def 3.2] and the proof of [FL17, Lemma
5.7]) for smooth varieties, is true for singular projective varieties X as well (using properties (d)
and (e) with Y a Grassmannian, noting that Schur polynomials represent cycle classes of Schubert
varieties). For (g), note that any basepoint free divisor is the pull back, from a projective space Pn,
of an effective divisor by a morphism and hence properties (d) and (e) apply. �

1.2. GW classes are rationally strongly basepoint free. Let G be a semisimple complex
algebraic group. Let B be the Borel subgroup corresponding to a fixed Cartan decomposition of G.
For the rest of the paper we assume g = 0, and until §5 we assume X is a homogeneous variety on
which the group G acts transitively. It follows that X = G/P where P ⊇ B is a parabolic subgroup.

Let W be the Weyl group of G and WP the Weyl group of P . For every w ∈ W/WP there is
a Schubert variety Xw ⊂ X obtained as the closure of BwP/P . The cycle classes of the Schubert
varieties give a Z basis of A∗(X), we sometimes denote the cycle class corresponding to w ∈W/WP

simply as w ∈ A∗(X).
Now suppose αi are cycle classes of Schubert varieties [Xwi ], i = 1, . . . , n. By [FP97], the coarse

moduli space M0,n(X,β) is equidimensional of the expected dimension (0.1), and we may work with

the fundamental class of the coarse moduli space M0,n(X,β) instead of the virtual fundamental

class. The classes Ic,Xβ,~α are therefore integral Chow cycles.

Proposition 1.4. Assume X = G/P , and let (X,β, ~α) satisfy the codimension c cycle condition.

Then the Gromov-Witten cycle Ic,Xβ,~α is a rationally strongly basepoint free on M0,n, i.e., Ic,Xβ,~α ∈
SBPFk(M0,n).

To prove Proposition 1.4, we refer to the following.

Lemma 1.5. Let η : M0,n(X,β)→ M0,n, and x ∈ M0,n.

(1) Each component of η−1(x) has dimension equal to dim M0,n(X,β)− dim M0,n;
(2) The map η is flat.
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Proof. (of Lemma 1.5) Part (1): This is of course well known, and follows from [KM94] and [FP97].
For a fixed nodal curve C of arithmetic genus 0, the space of maps C → X has dimension dimX+β ·
TX = dim M0,n(X,β)−dim M0,n [FP97, Section 5.2]. We have to therefore account for the collapsing
operation in which a C has a component which is mapped on to X with positive degree, and has
only two special points (the point in M0,n collapses this component). Such maps are subject to
a non-trivial equivalence: The extra component has positive dimensional space of automorphisms
fixing the marked points, and hence brings down the count of space of maps by at least one.

Part (2): Locally M0,n(X,β) is the quotient of a smooth variety Y by a finite group G. The

composite map Y → Y/G ⊆ M0,n(X,β)
η→ M0,n is flat by [Mat89, Theorem 23.1] since Y and M0,n

are smooth and all fibers have the expected dimension by Lemma 1.5. The coordinate ring of Y/G
is a direct summand of the coordinate ring of Y , and hence is flat over M0,n(X,β) [KV99, Remark
2.6.8]. �

Proof. (of Proposition 1.4) One has maps ev : M0,n(X,β) → Xn and flat maps η : M0,n(X,β) →
M0,n. We claim that the pull back under ev of α1 ⊗ α2 ⊗ . . . ⊗ αn is strongly basepoint free. This

claim implies Proposition 1.4, since the Gromov-Witten cycle Ic,Xβ,~α is the pushforward η∗(ev∗(α1 ⊗
α2 ⊗ . . .⊗ αn)) and η is flat (and using Property (c) in Section 1).

Every effective cycle on a projective homogeneous space is strongly basepoint free, see Lemma
1.3 (e). Therefore α1 ⊗ α2 ⊗ . . .⊗ αn is a basepoint free cycle on Xn.

We now use the following property (d) of Lemma 1.3: If X,Y are projective varieties, with Y
smooth, and π : X → Y is a morphism, then π∗ SBPFk(Y ) ⊆ SBPFk(X). �

Remark 1.6. It is easy to see, rather immediately, that Ic,Xβ,~α is basepoint free on M0,n. Let P

be a point of M0,n, and let Z ⊂ Xn be the product of Schubert varieties Xi with cycle classes
αi. Note that Gn acts transitively on Xn. By Kleiman’s Bertini theorem [Kle74], for general
~h = (h1, . . . , hn) ∈ Gn, one has that ev−1(~hZ) has the expected codimension inside M0,n(X,β),
and meets the fiber η−1(P ) (which is equidimensional) in the expected dimension, which is easily

computed to be −c < 0. The cap product (0.3) is represented by the effective cycle ev−1(~hZ), and
the basepoint freeness follows.

1.3. Chern classes of conformal blocks on M0,n are rationally strongly basepoint free.
The name conformal blocks bundles, also called bundles of coinvariants (covacua), refers to vector

bundles of coinvariants V(g, ~λ, `) defined onMg,n, where (g, ~λ, `) is a compatible triple consisting of

a simple Lie algebra g, a positive integer `, and ~λ = (λ1, . . . , λn) are dominant weights for g at level
`. These were originally constructed in [TUY89]. See [Fak12] for a summary, as well as a proof of
global generation in case g = 0 (which implies basepoint freeness of the Chern classes), and many
relevant examples and results, including formulas for the Chern classes in genus zero (see Remark
1.7 and Lemma 1.3; also see [Ful98, Example 12.1.17]). The total Chern character was given in
[MOP+17] in arbitrary genus. In [GM16] some results on higher Chern classes of conformal blocks
bundles are discussed.

Remark 1.7. Schur polynomials in the Chern classes of V(g, ~λ, `) on M0,n are rationally strongly
basepoint free. Note that these Schur classes include Chern classes of V. Indeed, the vector bundles

V(g, ~λ, `) defined on M0,n, are globally generated in case g = 0 [Fak12], and parts (e),(f) of Lemma

1.3 therefore apply. Chern classes of V(g, ~λ, `) are elements of Fulger and Lehman’s Pliant cone,
which sits inside the cone of strongly basepoint free divisors. Here it makes sense to talk about the
closed cone of rationally strongly basepoint free divisors as numerical and rational equivalence are
the same.
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2. GW cycles

In Proposition 2.2 we give a formula for the intersection of a GW cycle of codimension one with
F-Curves, described below in Def 2.1. These curves can be used to compute the class of a divisor
(see Section 2.1.2). Ingredients for the proof of Proposition 2.2 will be defined in Section 2.2.1. The
proof is given in Section 2.2.3.

Prop 2.2 is generalized in Proposition 2.3 to give an explicit formula for the intersection of a GW-

loci Ic,Xβ,~α of arbitrary codimension c with a boundary cycle of complementary codimension, which

like F-curves, are products of moduli spaces. The proof of Prop 2.2 that of Proposition 2.2, and we
state them separately for clarity, and because we focus on divisors.

We show in Section 2.3 how it is sometimes possible to simplify the formulas by reducing four-point
classes to three points.

2.1. Computing classes of GW cycles by intersecting with boundary classes.

2.1.1. Intersecting GW divisors with boundary curves.

Definition 2.1. If N1 ∪ · · · ∪ N4 is a partition of [n] = {1, . . . , n} consisting of four nonempty
subsets, then given four points (P1, {pi}i∈Nj ∪Pj) ∈M0,|Nj |+1, with 1 ≤ j ≤ 4, we can define a map

M0,4 −→ M0,n, (C0, {Q1, . . . , Q4}) 7→ (C, ~p),

where C is a union of C0 and the four copies of pointed P1 glued by attaching the points {Pj}4j=1

to the four marked points {Qj}4j=1. The F-Curve FN1,··· ,N4 is the numerical equivalence class of the
image of this map.

Proposition 2.2. Let FN1,...,N4 be an F-Curve on M0,n, let X be a smooth projective homogeneous
variety and suppose ~α satisfies the codimension 1 cycle condition. Then

I1,Xβ,~α · FN1,...,N4 =
∑

I1,X
β−

∑4
j=1 βj ,~ω

4∏
j=1

I0,X
βj ,α(Nj)∪ω′j

,

where we sum over ~ω = {ω1, . . . , ω4} ∈ (W/WP )4, and degrees β = (β1, . . . , β4) such that for each
j ∈ {1, . . . , 4}, one has that (X,βj , α(Nj) ∪ ω′j) satisfies the codimension 0 cycle condition.

We note the similarity of the expression in the statement Prop 2.2 with [Fak12, Prop 2.7] which

gives the intersection of conformal blocks divisors c1(V(g, ~λ, `)) and F-Curves. These are equal in
the case X = Pr, g = slr+1, and ` = 1 (see Theorem 3.1).

2.1.2. The nonadjacent basis. To compute classes of GW divisors in examples, we will use what
is called the nonadjacent basis, which we next describe. Let Gn be a cyclic graph with n vertices
labeled S = {1, 2, . . . , n}. A subset of vertices T ⊂ S is called adjacent if t(T ), the number of
connected components of the subgraph generated T, is 1. Since Gn is cyclic, if t(T ) = k, then
t(T c) = k.

By [Car09, Proposition 1.7]. The set B = {δT : t(T ) ≥ 2} forms a basis of Pic(M0,n)Q.
The dual of a basis element δT ∈ B is an F-curve if and only if t(T ) = 2, and for t(T ) > 2,

dual elements are alternating sums of F-curves. In [MS15] an algorithm is given for finding a dual
element.
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2.1.3. Intersecting higher codimension GW cycles with boundary classes. For k = n−3−c, the locus

δk(M0,n) = {(C, ~p) ∈ M0,n| C has at least k nodes}
is effective and has dimension c. We will next give a formula for the intersection of its irreducible

components with Ic,Xβ,~α in case (X,β, ~α) satisfies the codimension c cycle condition. For the formula,

we set a small amount of notation. Irreducible components of δk(M0,n) are determined by the dual
graph of the curves parametrized. Such a graph is a tree with k edges, joining k + 1 vertices,
decorated by n half-edges, so that each vertex has at least 3 edges plus half-edges.

To simplify the discussion, we label the vertices ~v = {v1, . . . , vk+1}, and edges ~e = {eij}1≤i<j≤k+1,
where we take eij to be zero unless vi and vj are connected by an edge. Half-edges are labeled
~h = {hj}nj=1, and we label the component δk(Γ

~v,~e,~h
).

In the formula given in Proposition 2.3, given a vertex vi, by α(vi) we mean the set of αj ∈ A∗(X)
associated to the set of half edges hj attached to the vertex vi. For each vertex vi we’ll also consider
new classes γia ∈ A∗(X), associated to the nonzero edges eia for i + 1 < a < k + 1 and classes
γ∗ai ∈ A∗(X), dual to γai ∈ A∗(X), associated to each nonzero edge eai. If the edge eij is zero (so
vertices vi and vj are not connected in the dual graph), we still write down a class γij , but it is
simply not in the formula, or one can imagine that there is an edge, and, by propagation of vacua,
we may assume the class is zero.

Proposition 2.3. With notation as above, one has

Ic,Xβ,~α · δ
k(Γ

~v,~e,~h
) =

∑∏
Ici,X
βi,α(vi)∪{γ∗ai}

i−1
a=1∪{γia}

k+1
a=i+1

,

where we are summing over 1 ≤ i ≤ k + 1 and 0 ≤ βi ≤ β, such that
∑k+1

i=1 βi = β, and taking the

product over γ1i, . . . , γi−1i, γii+1, . . . , γik+1 ∈ (W/WP )k+1.

2.2. Ingredients for the proofs of Propositions 2.2 and 2.3.

2.2.1. Factorization, Propagation of Vacua. In the proof of Propositions 2.2 and 2.3 we use two
properties of GW classes which we call Factorization, and Propagation of Vacua for their similarity
to properties of the same name that hold for vector bundles of coinvariants and conformal blocks.

Here I0,Xβ,~α plays the role of the rank of the vector bundle of co-invariants, and the I1,Xβ,~α corresponds

to first Chern classes of the bundles.
To state this factorization formula [KM94, Section 2.2.6], we write the cohomology class of the

diagonal for X = G/P : Recall from Section 1.2 that the Schubert classes Xw in X = G/P are
parameterized by W/WP . For w ∈W/WP , let w′ be the unique element so that [Xw] · [Xw′ ] = [pt] ∈
A∗(X). Then the cohomology class of the diagonal ∆ ⊂ X ×X is

(2.1) [∆] =
∑

w∈W/WP

Xw ⊗Xw′ ∈ AdimX(X ×X).

Let γ : M0,n1+1 ×M0,n2+1 → M0,n1+n2 be the clutching morphism, where one attaches pointed

curves by glueing them together along the last marked point for each factor. Let πi : M0,n1+1 ×
M0,n2+1 −→ M0,ni+1 be the projection maps.

If (X,β, {α1, . . . , αn1+n2}) satisfies the codimension 1 cycle condition, then the factorization

formula states that γ∗I1,Xβ,{α1,...,αn1+n2}
decomposes as sum of divisor classes pulled back from the

M0,ni+1 along πi. The class pulled back from M0,n2+1 equals∑
β1+β2=β,w∈W/WP

I0,Xβ1,{α1,...,αn1 ,[Xw]}
π∗2I

1,X
β2,{αn1+1,...,αn,[Xw′ ]}
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Note that if cβ1 and cβ2 are the corresponding codimensions in (0.2) then cβ1 + cβ2 = cβ, since
the codimensions of Xw and Xw′ add up to dimX.

If (X,β, {α1, . . . , αn1+n2}) satisfies the codimension 0 cycle condition, then I0,Xβ,{α1,...,αn1+n2}
breaks

up as a sum ∑
β1+β2=β,w∈W/WP

I0,Xβ1,{α1,...,αn1 ,[Xw]}
I0,Xβ2,{αn1+1,...,αn,[Xw′ ]}

.

These can be generalized to analogous factorization formulas for Ic,Xβ,{α1,...,αn,[T0]} in case (X,β, ~α)

satisfies the codimension c cycle condition.
The GW classes also satisfy a formula [KM94, Section 2.2.3], analogous to what is called Propaga-

tion of Vacua for vector bundles of conformal blocks. Namely, let T0 ∈ A0(X) be the fundamental
class of the space. Then if (X,β, ~α) satisfies the codimension c cycle condition, then

Ic,Xβ,{α1,...,αn,[T0]} = π∗n+1I
c,X
β,{α1,...,αn},

where πn+1 : M0,n+1 → M0,n is the projection map.

2.2.2. Small quantum cohomology. Assume X is a homogenous space as before. Let T1, . . . , Tp be a
basis of A1(X). Let Z[q] = Z[q1, . . . , qp] where q1, . . . , qp are formal variables. For β ∈ H2(X), let

qβ = qβ·T11 qβ·T22 . . . q
β·Tp
p , and set QH∗(X) = H∗(X) ⊗ Z[q]. Define (see [FP97, Section 10]) a small

quantum Z[q]-algebra structure ? on QH∗(X) by

α1 ? α2 =
∑
γ,β

qβI0,Xβ,{α1,α2,γ}γ

here α1, α2 ∈ H∗(X) and β runs through H2(X), and γ runs through all Schubert cycle classes.

2.2.3. Proof of Proposition 2.2. Let FN1,...,N4 be an F-Curve, and I1,Xβ,~α a GW-divisor on M0,n. With-

out loss of generality we can rename the αi so that {αi : i ∈ Nj} = {αjj , . . . , α
j
nj}, where nj = |Nj |.

There is a surjective map from a product of M0,4 and four copies of M0,3 onto FN1,N2,N3,N4 . To

compute the class of I1,Xβ,~α , one pulls the divisor back to the product of the moduli spaces. By the

factorization formula, one gets the asserted formula.

Remark 2.4. The proof of Proposition 2.3 is analogous to the proof of Proposition 2.2.

2.3. Divisor intersection simplifications. In the notation of Proposition 2.2, in order to find
classes of GW divisors, one needs to know how to find, each part Ni of a partition [n] = N1∪ · · ·N4,

I0,X
βj ,α(Nj)∪ω′j

∈ A0(M0,|Nj |+1) ∼= Z and I1,X
β−

∑4
j=1,{ω1,...,ω4}

∈ Pic(M0,4) ∼= Z.

Often these quantities can be simplified computationally. For example, setting α(Nj) ∪ ω′j =

{γ1, . . . , γk},
(1) I0,Xβ,{γ1,...,γk} always reduces to 3-point GW numbers, which are the coefficients of qβ[pt] in the

small quantum product
[Xγ1 ] ? [Xγ2 ] · · · ? [Xγk ].

(2) Setting β′ = β −
∑

i βi, if for some i ∈ {1, . . . , 4}, the class ωi has codimension one, then
one can reduce to a three point number. For instance, say ω4 has codimension one. Then
by [FP97, Prop III, p 35],

(2.2) I1,Xβ′,{ω1,...,ω4} = (ω4 · β′) I0,Xβ′,{ω1,ω2,ω3} ∈ Z = Pic(M0,4).

(3) I1,X0,{ω1,...,ω4} = 0 and I0,X0,{γ1,...,γk} coincides with the multiplicity of the class of a point.
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Simplification of the four-point numbers can often be made in terms of small quantum cohomology
numbers and from identities pulled back from M0,4.

2.3.1. The formulas to be described in this section are from [KM94, 3.2.3, Step 2]. We extend

the definition of Ic,Xβ,~α to allow for arbitrary αi ∈ QH∗(X) = H∗(X) ⊗ Z[q] (see Section 2.2.2) by

Z-linearity (and not Z[q] linearity!) in αi, and by setting

Ic,Xβ,{qm1α1,...,qmnαn} = Ic,Xβ−
∑
imi,{α1,...,αn}.

Recall that the degree |qβα| is β · c1(TX) + |α| for homogeneous α ∈ H∗(V ).

Proposition 2.5. For αi, αj , αk, α`, αm ∈ QH∗(X), and homogeneous such that∑
x

|αx| = 1 + β · c1(TX) + dimX,

(2.3) I1,Xβ,{αk,α`,αm,αi?αj} = I1,Xβ,{αj ,α`,αm,αi?αk} + I1,Xβ,{αi,αk,αm,αj?α`} − I
1,X
β,{αi,αj ,αm,αk?α`}

= I1,Xβ,{αj ,αk,αm,αi?α`} + I1,Xβ,{αi,α`,αm,αj?αk} − I
1,X
β,{αi,αj ,αm,αk?α`}.

Proof. It is easy to check that we may assume αi, αj , αk, α`, αm ∈ H∗(X), by writing αi = qβiα′i etc.

We work with the contraction morphism ρ : M0,5(X,β) → M0,4. On M0,4
∼= P1, one has the

divisor class identities δij,k` = δik,j` = δi`,jk. When pulled back along ρ, these give the identities

(2.4)
∑
S

I3,Xβ1,{αi,αj ,γ} I
4,X
β−β1,{αk,α`,αm,γ′} +

∑
S

I4,Xβ1,{αi,αj ,αm,γ} I
3,X
β−β1,{αk,α`,γ′}

=
∑
S

I3,Xβ1,{αi,αk,γ} I
4,X
β−β1,{αj ,α`,αm,γ′} +

∑
S

I4,Xβ1,{αi,αk,αm,γ} I
3,X
β−β1,{αj ,α`,γ′}

=
∑
S

I3,Xβ1,{αi,α`,γ} I
4,X
β−β1,{αj ,αk,αm,γ′} +

∑
S

I4,Xβ1,{αi,α`,αm,γ} I
3,X
β−β1,{αj ,αk,γ′},

where S = {γ, β1 | [∆] =
∑
γ ⊗ γ′ }. Using that

αx ? αy =
∑
β1

qβ1〈αx, αy, γ〉β1 γ′,

one has

qβ1I4,Xβ−β1,{αa,αb,αc,αd} = I4,X
β,{αa,αb,αc,qβ1αd}

.

We may therefore rewrite Eq 2.4 as

(2.5) I4,Xβ,{αk,α`,αm,αi?αj} + I4,Xβ,{αi,αj ,αm,αk?α`}

= I4,Xβ,{αj ,α`,αm,αi?αk} + I4,Xβ,{αi,αk,αm,αj?α`}

= I4,Xβ,{αj ,αk,αm,αi?α`} + I4,Xβ,{αi,α`,αm,αj?αk}.

�
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2.3.2. Application of Proposition 2.5. We write a simpler version of Proposition 2.5, which when
used judiciously can simplify 4-point numbers to sums of 3-point numbers.

Proposition 2.6. For αi, αj , αk, α`, αm ∈ QH∗(X), suppose that α` = H is the class of a hyper-

plane, and αm = H?(t−1), so that α` · αm = H ?H?,t−1 = H?,t. Then one can write:

(2.6) I1,Xβ,{αi,αj ,αk,H?t} = I1,X
β,{αi?H,αk,αj ,H?(t−1)} + I1,X

β,{αi,H,αk,H?(t−1)?αj}
− I1,X

β,{αi?αj ,αk,H,H?(t−1)}.

Remark 2.7. If α2, α3, α3 ∈ H∗(X) (and not in QH∗(X)), by [FP97, Prop III, p 35],

I1,Xβ,{H,α2,α3,α4} = (H · β)I0,Xβ,{α2,α3,α4}

and

I1,X
β,{H,qβ2α2,qβ3α3,qβ4α4}

= (H · β′)I0,Xβ′,{α2,α3,α4}.

where β′ = β − β2 − β3 − β4.
Therefore in Equation (2.6), the second and third term can be computed using small quantum

cohomology. The first term has H?(t−1) in the last coordinate, so the exponent in H has improved,
and we can iterate the procedure to reduce to t = 1.

3. Projective space

Here we prove Theorem 3.1, which links divisor classes I1,P
r

~m,d on M0,n to conformal blocks divisors

for type A at level 1. In Section 3.1 we outline a potential generalization to Gromov-Witten divisors
for Grassmannians G(`, r + `) with higher conformal blocks divisors for type A at level `. We only
expect this correspondence to hold in for divisors: in Section 3.2 we give a higher codimension cycle
for projective space that pushes forward to an extremal divisor, not known to be given by the first
Chern class of any conformal blocks bundle.

Theorem 3.1. Suppose we are given a pair (r, ~m) such that
∑n

i=1mi = (r + 1)(d+ 1). Then

I1,P
r

~m,d ≡ c1(V(slr+1, {ωm1 , . . . , ωmn}, 1)).

Remark 3.2. While in both cases quantum cohomology for Pr = Gr(1, r+1) is involved, in Theorem
3.1, such classes are paired with first Chern classes of conformal blocks bundles for slr+1, while in
Witten’s Theorem they identified with ranks of conformal blocks bundles for slr.

Proof. Conformal blocks divisors c1(V(g, ~λ, `)) are described briefly in Section 1.3. Here we are

concerned with the special case when g = slr+1, and ` = 1. In this case, for ~λ = (λ1, . . . , λn), the λi
correspond to Young diagrams with rows ` = 1 ≥ λ1i ≥ · · · ≥ λri , and the compatibility requirement

is that
∑n

i=1 |λi| = (r + 1)(d+ 1), where |λi| =
∑r

j=1 λ
j
I .

It is enough to show that each divisor intersects any F-curve in the same degree. By Proposition
2.2, this amounts to proving, for any partition N1∪· · ·∪N4 of [n] into nonempty subsets, if we write
~m(Nj) = {mi : i ∈ Nj}, for any ~a = (a1, a2, a3, a4) with∑

i∈Nj

mi + a′j = (r + 1)(dj + 1), and
∑
i

ai = (r + 1)(d−
∑
i

di + 1).

that I0,P
r

dj , ~m(Nj)∪a′j
is proportional to rank(V(slr+1, {ωmi : i ∈ Nj} ∪ ωa′j , 1)), and that

I1,P
r

d−
∑
i di,~a

≡ c1(V(slr+1, {ωa1 , . . . , ωa4}, 1)).

In [Fak12], Fakhruddin proved that the level one bundles in type A always have rank one. So it
is enough to check:
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(1) Four point classes are the same:

I1,P
r

β,~a ≡ c1(V(slr+1, {ωa1 , . . . , ωa4}, 1)), where
∑
i

ai = (r + 1)(β + 1), and

(2) Coefficients are the same:

I0,P
r

dj , ~m(Nj)∪a′j
= RankV(slr, {ωai : i ∈ Nj} ∪ ωa′j , 1) = 1.

To see that four point classes are the same: If one of the ai = 0 then the class is pulled back
from M0,3, and hence zero. The conformal blocks divisor is also trivial in this case. If β = 0, then
divisors from both theories are zero. Clearly a1 + a2 + a3 + a4 ≤ 4r and hence β ∈ {0, 1, 2}.

We show now that if β = 2, the GW divisor is zero (the same is true of the conformal blocks
divisor [Fak12, Lemma 5.1]). Clearly in this case r ≥ 3 (otherwise we will need 4 classes in P2 with
codimensions summing to 9). We want to count maps f : (P1, p1, p2, p3, p4) → Pr of degree 2 such
that pi go into specified Schubert cells (generic translates of standard cells). The image of the conic
lies in a plane in Pr. The space of such planes Gr(3, r+ 1) is of dimension 3(r− 2). The conditions
imposed on this plane are at least

∑
(ai−2) = 3(r+1)−8 > 3(r−2), hence there are no such planes

(If ai = 3, then we want the C3 ⊂ Cr+1 arising from the plane to meet a codimension 3 hyperplane
in Cr+1 non-trivially, which imposes one condition on the plane. Similarly if ai > 3, the number of
conditions imposed is (ai − 2)).

Finally, if β = 1, we may assume all ai > 1, because if ai = 1, the GW divisor is of degree 1
(since it reduces to a three point GW number, see Section 2.3) as is the conformal blocks divisor, by
[Fak12, Lemma 5.1]. Choose subspaces Li ⊂ Cr+1 of codimension ai in general position. We claim
the set of degree 1 maps f : (P1, p1, . . . , p4)→ Pr so that f(pi) ∈ P(Li) is in one-one correspondence
with the set of two dimensional subspaces V of Cr+1 such that V ∩ Li 6= {0}; these correspond
to Schubert varieties for the partitions (a1 − 1, 0), (a2 − 1, 0), (a3 − 1, 0), (a4 − 1, 0). Note that
(a1 − 1) + (a2 − 1) + (a3 − 1) + (a4 − 1) = 2(r + 1) − 4 = 2(r − 1) in the 2(r − 1) dimensional
Grassmannian Gr(2, r + 1), so that the enumerative count in Gr(2, r + 1) is also finite.

The correspondence takes f to the two dimensional linear subspace spanned by the image of f .
The reverse correspondence takes V to the map f : P1 → Pr of degree 1 with V as the span of the
image of f (unique up to automorphisms of P1) and the points pi are determined by the condition
that f(pi) is the line V ∩Li. Note that the points pi are distinct in the reverse correspondence: By
dimension counting, because if p1 = p2, then V ∩ L1 ∩ L2 is positive dimensional, and the numbers
a1 − 1, a2 − 1 get replaced by a1 + a2 − 1 making the number of conditions larger.

Assuming a1 ≤ a2 ≤ a3 ≤ a4, we want the the cardinality of the sets above to be a1 if a2 + a3 ≥
a1 + a4, and r + 1 − a4 otherwise as is the case for the corresponding conformal blocks divisor
[Fak12, Lemma 5.1]. Let λi = ai − 1.

Since Littlewood-Richardson coefficients compute both the cohomology of Grassmannians Gr(2, r+
1), and dimensions of spaces of invariants in irreducible representations of sl2 (see e.g., [Ful00, Sec-
tion 6.2]), we may compute the above cardinality as follows: Let V (λi) denote the irreducible sl2
representation corresponding to the partition λi above. The desired cardinality is the dimension of
the space of sl2 invariants in Vλ1⊗Vλ2⊗Vλ3⊗Vλ4 . Since representations of sl2 are self dual, this num-
ber is the number of irreducible representations (since these tensor products are multiplicity free)
that occur in both Vλ1⊗Vλ4 and Vλ2⊗Vλ3 . The tensor product of V (λ1) and V (λ4) is a multiplicity
free string of representations V (λ4−λ1), V (λ4−λ1+2), . . . , V (λ1+λ4) (similarly for the other tensor
product). Since λ4−λ1 ≥ λ3−λ2, the desired intersection number is 1+1/2(λ4+λ1−(λ4−λ1)) = a1
if λ4 + λ1 ≤ λ2 + λ3, and equal to 1 + 1/2(λ2 + λ3 − (λ4 − λ1) = 1 + (r − 1 − λ4) = r + 1 − a4
otherwise, as desired.
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Since the ~m(Nj)∪a′j satisfy the c = 0 co-cycle condition, I0,P
r

dj , ~m(Nj)∪a′j
can be computed with small

quantum cohomology numbers for Pr and are easily seen to be 1. The ranks of the conformal blocks
divisors in type A at level one are one [Fak12]. The proof of Theorem 3.1 is now complete. �

In [Gia13], it was shown for Sn-invariant divisors c1(V(slr+1, ~λ, 1)), (and then later for general

divisors in [GG12]), in case
∑

i=1 |λi| = (r+1)(d+1), that the divisors c1(V(slr+1, ~λ, 1)) give maps to
moduli spaces that generically parametrize configurations of weighted points that lie on a Veronese
curve of degree d in Pd. The statement of the result in Theorem 3.1 is a priori different, as it refers
generically to maps of P1 to Pr.

Let Γ be the set of Gromov-Witten divisors on M0,n coming from X = P1. In [Fak12], Fakhruddin

proved that the set of nontrivial level one divisors c1(V(sl2, ~λ, 1)) forms a basis for the Picard
group of M0,n. Here λi = ωai , and

∑n
i=1 |αi| =

∑
i ai = 2(d + 1). By Theorem 3.1, one also has

c1(V(sl2, ~λ, 1)) = I1,P
1

d,~a ∈ A1(M0,n). This implies that the closed cone in A1(M0,n) spanned by Γ

is full dimensional. Keel proved that A1(M0,n) generates Ak(M0,n), and so the cone generated by
products of elements of Γ, which are basepoint free cycles of codimension k, is full dimensional
as well. In other words, even the simplest of these classes generate a full-dimensional subcone of
strongly-basepoint free classes in the cone of effective cycles of codimension k.

3.1. A potential generalization. Any partition λi = (0 ≤ λ1i ≤ · · ·λ`i ≤ r) determines a Schubert

variety Xαi of dimension |αi| =
∑`

j=1 α
j
i in Gr(`, r + `). One could ask the following:

Question 3.3. Are there other equivalences between conformal blocks divisors and Gromov-Witten
cycles in codimension one? For instance, if for some d, one has that r + ` divides (r + 1)(d − 1),

then for β = (r+1)(d−1)
(r+`) + 1, does one have

I
1,Gr(`,r+`)

β,~λ
= c1(V(slr+1, ~λ, `))?

In case ` = 1, one has β = d, and the answer to Question 3.3 is yes, as we saw in Theorem 3.1.

In case d = 1, one would have β = 1, and the question asks whether I
1,Gr(`,r+`)

1,~λ
= c1(V(slr+1, ~λ, `)).

Under these assumptions, since
∑

i |λ| = (r + 1)(` + 1), the conformal block bundles are at the

critical level, and so by [BGM15], one has c1(V(slr+1, ~λ, `)) = c1(V(sl`+1, ~λ
T , r)), a positive answer

to Question 3.3 in this case would imply that I
1,Gr(`,r+`)

β,~λ
= I

1,Gr(r,r+`)

β,~λT
, which is a tautology, since

Gr(`, r + `) = Gr(r, r + `).

3.2. A higher codimension cycle that pushes forward to an extremal divisor. We next
define a divisor π∗Z on M0,n−1, formed from the pushforward of a codimension 2 Gromov-Witten

class Z on M0,n, where we take the pushforward along the forgetful map M0,n → M0,n−1. In case

n = 7, our extensive knowledge of M0,6 enables us to check that π∗Z lies on a face spanned by the 2
extremal rays R5 and R16, the 5th and 16th rays on Swinarski’s list of extremal rays of the nef cone
[Swi11]. The ray R16 is not known to be spanned by a conformal blocks divisor, in spite of concerted
and dedicated searches done with computer software (see Section 4.5 for a similar example).

To define the codimension 2 Gromov-Witten class on M0,n, first suppose
∑
mi ≡ c−1 (mod r+1).

Then, Ic,P
r

~m,d is a codimension c rationally strongly basepoint free cycle on M0,n with (d+ 1)(r+ 1) +

c− 1 =
∑
mi. Let π : M0,n → Mo,n−c+1 be the map which forgets the last c− 1 points. We wish to

determine/study π∗I
c,Pr
~m,d a basepoint free divisor on M0,n−c+1.
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We consider here an explicit example for c = 2. If mn = 1, then this push forward coincides with

I1,P
r

~m′,d on M0,n−1 where ~m′ = (m1, . . . ,mn−1). We therefore consider an example for which mn > 1,

pushing forward I2,P
3

{H4
1 ,H

3
3},2

from M0,7 to M0,6.

Let π : M0,7 → M0,6 be the morphism which drops the 7th marked point. For Pic(M0,6), [MS15]
one nonadjacent basis is given by the set of classes

{δ13, δ14, δ15, δ24, δ25, δ26, δ35, δ36, δ46, δ124, δ125, δ134, δ135, δ136, δ145, δ146}.
Classes of divisors can be computed by intersecting with curves in the dual basis:

(3.1) {F1,2,3,456, F1,4,23,56, F1,5,6,234, F2,3,4,156, F2,5,16,34, F1,2,6,345,

F3,4,5,126, F3,6,12,45, F4,5,6,123, F3,4,12,56, F5,6,12,34, F1,2,34,56,

(F5,6,13,24 + F1,2,3,456 + F2,3,4,156 − F2,3,16,45), F2,3,16,45, F1,6,23,45, F4,5,16,23}.

To determine the class of π∗(I
2,P3

{H1,H6
2},2

) on M0,6, we intersect Z = I2,P
3

{H1,H6
2},2

with the pullback

π∗(F ), where F runs over the set of curves dual to the nonadjacent basis. Because of the symmetry
of the Schubert classes used to define Z, we only need to keep track of where the 5th and 6th points
are. The coefficients of the class in the non-adjacent basis

[A,B,C,A,D,E,E,D,C,B, F,B, (F + 2A−G), G,D,D] = [1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 1, 1, 3, 0, 1, 1]

= [0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0] + [1, 0, 1, 0, 1, 1, 1, 0, 2, 0, 1, 1, 2, 0, 0, 1] = R5 +R16,

where for x ∈ {p1, p2, p3, p4}, and y ∈ {p5, p6} each number comes from intersecting with an F -curve:

A = π∗Z · F{x}{x}{x}{x,y,y}
B = π∗Z · F{x}{x}{x,x}{y,y}
C = π∗Z · F{x}{y}{y}{x,x,x}

D = π∗Z · F{x}{y}{x,y}{x,x}
E = π∗Z · F{x}{x}{y}{x,x,y}
F = π∗Z · F{y}{y}{x,x}{x,x}

G = π∗Z ·F{x}{x}{x,y}{x,y}.

We note that the divisor π∗Z contracts 12 F-Curves on M0,6, and there are 23 extremal rays of

the nef cone Nef(M0,6) that also contract those F curves. In particular, π∗Z lies on the face spanned
by the 23 extremal rays. Using LRS [Avi18], one can check that as a cone, this face is 7 dimensional.
In particular, a generic element on this face would be described by an effective combination of 7
divisors. In particular, since π∗Z, a sum of two extremal rays, it is a special element of this face.

4. Quadrics

In this section we demonstrate how to work with Gromov-Witten classes given by quadrics. In
Propositions 4.4 and 4.5 we give criteria for Gromov-Witten divisors defined from odd quadrics to
lie on extremal faces of the nef cone. As an application, in Section 4.3 we define a Gromov-Witten
divisor for an odd quadric, which we prove spans an extremal ray of the nef cone on M0,n for any n.
In Section 4.4 we define a family of extremal Gromov-Witten divisors given by even quadrics, and
we show that on M0,6, the divisor produced is not known to be given by a conformal blocks divisor.

4.1. Background and notation. Following [EKM08, Part 3], let X = Qr be a smooth projective
quadric of even dimension r = 2m ≥ 4 or of odd dimension r = 2m+1 ≥ 1 given by a nondegenerate
quadratic form on a vector space V , of dimension r + 2 over a field F , so X ⊂ P(V ) (when r = 2,
X = P1 × P1, and the computations reduce to the case of P1, [Beh99]).

Let H = H1 ∈ A1(X) the pullback of the hyperplane class in A1(P(V )). We let Hi = H i
1 (the

i-fold cup product in ordinary cohomology) for i ∈ [1, r] and H0 = 1.
The degree of the canonical bundle of a smooth projective quadric Qr is −r. So for (X, d, ~α) to

satisfy the codimension c cycle condition we must have that
∑

i |αi| = c+ r(d+ 1).
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In case r = 2m+ 1 is odd:

• Let W be a maximal totally isotropic subspace so P(W ) ⊂ X, dimP(W ) = m. For any
integer i ∈ [0,m], let Li ∈ Ai(X) be the class of an i dimensional subspace of P(W ). Then
the total Chow ring of X is free with basis {Hi, Li | i ∈ [0,m]}. Note that Hm+i = 2Lm+1−i
for i ∈ [1,m+ 1] and H · Li = Li−1 for any i ∈ [1,m].
• As a basis of the rational cohomology we take 1 = H0, H1, . . . ,Hr.

In case r = 2m is even:

• The space of maximal isotropic subspaces of V has two components. Let W1,W2 be repre-
sentatives in each component. Now P(Wa) ⊂ X, a = 1, 2 and let ξ1, ξ2 ∈ Am(X) be their
cycle classes. For i ∈ [0,m−1], let Li ∈ Ai(X) be the cycle class of an i dimensional subspace
of P(W1) (note that we get the same cycle class if W1 is replaced by W2 here). The total
Chow ring of X is free with basis H0 = 1, H1, . . .,Hm−1, ξ1, ξ2, Lm−1 . . ., L0. We also have
H · Li = Li−1 for any i ∈ [1,m − 1], Hm = ξ1 + ξ2 and H · ξa = Lm−1 for a = 1, 2, so that
Hm+1 = 2Lm−1.
• For even dimensional quadrics, as a basis of the rational cohomology we take

1 = H0, H1, . . . ,Hm−1, ξ1, ξ2, Hm+1, . . . ,Hr.

In both cases, for X = Qr (even or odd), H?j = Hj if j < r. If j = r, then H?j equals Hj plus
a multiple of q times the identity in cohomology. But a four point number with one of the terms
equalling identity in cohomology is zero. Therefore we may always write < Hj , y1, y2, y3 >β=<
H?,j , y1, y2, y3 >β and apply Proposition 2.6 to simplify intersection formulas.

The cohomology of an even quadric is generated by the hyperplane class except in the middle
dimension. But we cannot have a 4 point number with all four terms in the middle dimension, since
the codimensions need to add up to 1 mod r. Therefore 4 point numbers for even quadrics are
computable with these methods.

To compute classes, we determine certain facts about the quantum cohomology of X = Qr.

Lemma 4.1. I0,Qr1,{H1,Hr,Hr−1} = 4.

Lemma 4.2.

Hi ? Hj =


Hi+j if i+ j < r;

Hr + 2qH0 if i+ j = r;
4qH` if i+ j = r + `, with i < r and j < r;
2qHi if i < r, and j = r;

4q2H0 if i = j = r.

Remark 4.3. The formulas in Lemmas 4.1 and 4.2 hold for r both even and odd. Formulas specific
to the even case are given in Section 4.4.

Proof. (of Lemma 4.1) For the first assertion, we need to count lines in the quadric Q which pass
through a point P , and a fixed line L in the quadric. Clearly four times this count gives us the
desired answer since Hr and Hr−1 are twice the classes of a point and a line respectively. Consider
the projective space spanned by the point P and the fixed line L, a P2. The quadric, restricted to
this P2 splits as a product Q = LL′ since it contains L, we may assume that L′ passes through the
point P (P 6∈ L), and L′ is the unique line we are looking for (it certainly meets L).

�

Proof. (of Lemma 4.2) For odd quadrics, one can show that H?i = Hi if i ≤ r − 1, and H?r =
H ? Hr−1 = Hr + 2q · 1, since the dual of 1 is 1

2Hr. H?r+1 = 2qH + H ? Hr = 4qH, since the

dual of H is 1
2Hr−1. For even quadrics we need the action of orthogonal group on the space of
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m + 1 isotropic subspaces of C2m+2 has two components. The dimension of intersection of two
subspaces in the same connected component is constant modulo two. Since the three point number
〈H,Hr, Hr−1〉1 is equal to 4, the multiplication rules for Hi ? Hj are the same.

�

4.2. Extremality results. As the following results show, it is straightforward to design divisors

I1,Qrd,~a , for Qr ⊂ Pr+1 an odd quadric, that lie on extremal faces of the nef cone.

Proposition 4.4. Let Qr ⊂ Pr+1 be an odd quadric, and I1,Qrd,~a a GW-divisor. If there is an index

i ∈ [n] such that ai = r and J ⊂ [n] \ i, such that for all j ∈ J , 1 ≤ aj ≤ r, and
∑

j∈J aj = r, then

I1,Qrd,~a contracts any F -curve of the form FI,A,B,C , for I = J ∪{i}, and lies on a face of the nef cone.

Proof. Let r = 2m+1, and two indices i and j ∈ [n] with ai = aj = r, then the divisor I1,Qrd,~a will kill

any F -curve of the form FI,A,B,C where I = {ai, aj}, since Hr?Hr = 4qH0, and 4qI1,Qrd,{H0,α1,α2,α3} = 0

for all possible α1, α2, α3 under consideration. More generally if there is an index i ∈ [n] such that
ai = Hr, and J ⊂ [n] \ i, such that for all j ∈ J , 1 ≤ aj ≤ r, and

∑
j∈J aj = r, one has ai = Hi, and

the star product of classes in J is Hr, so the star product of classes in I = J ∪{i} is Hr ?Hr = 4qH0,
and the result follows. �

Proposition 4.5. Let Qr ⊂ Pr+1 be an odd quadric, and I1,Qrd,~a a GW-divisor with d ≤ 4.

d = 1 If there are indices a1 and a2 such that a1 + a2 > r, then I1,Qr1,~a will kill any F -curve of the

form FA,B,C,D where {a1, a2} ⊂ A.

d = 2 If there are indices a1, a2, b1, and b2 such that a1 + a2 > r, and b1 + b2 > r then I1,Qr2,~a will

kill any F -curve of the form FA,B,C,D where {a1, a2} ⊂ A and {b1, b2} ⊂ B.
d = 3 If there are indices a1, a2, b1, b2, c1, and c2, such that a1+a2 > r, b1+b2 > r and c1+c2 > r

then I1,Qr3,~a will kill any F -curve of the form FA,B,C,D where {a1, a2} ⊂ A, {b1, b2} ⊂ B, and

{c1, c2} ⊂ C.
d = 4 If there are indices a1, a2, b1, b2, c1, c2, d1, and d2, such that a1 + a2 > r, b1 + b2 > r,

c1 + c2 > r, and d1 + d2 > r then I1,Qr4,~a will kill any F -curve of the form FA,B,C,D where

{a1, a2} ⊂ A, {b1, b2} ⊂ B, {c1, c2} ⊂ C, and {d1, d2} ⊂ C.

Proof. Intersections on the leg bring the degree down by one, leaving the spine at degree zero. �

4.3. A Gromov-Witten class that spans an extremal ray of Nef(M0,n). Consider the Gromov-

Witten divisor I1,Qr
n−2,{1,rn−1} on M0,n, where n = 2r + 2, then by Proposition 4.4, one has that

I1,Qr
n−2,{1,rn−1} contracts all F -curves of the form

{F1,1,i,j : 1 ≤ i ≤ r − 1, i+ j + 2 = n}, n = 2r + 2.

Indeed, while the i parameter is small, the j ≥ r+ 1 in case. The class is not trivial as it is nonzero
on the curve F1,1,r,r. As was shown in [Fak12, Proposition 5.2], c1(sln, ω

n
1 , 1) also intersects F1,1,i,j ,

where 1 ≤ i ≤ r − 1 in degree zero, and F1,1,r,r in nonzero degree, I1,Qr
n−2,{1,rn−1} is proportional to

c1(sln, ω
n
1 , 1). Since this family of curves is independent, we conclude that I1,Qr

n−2,{1,rn−1} spans an

extremal ray of the nef cone. Incidentally, by [BGM15, Proposition 1.6], one has that c1(sln, ω
n
1 , 1) =

c1(sl2, ω
n
1 , n− 1).

For a specific example, one can directly calculate, using the nonadjacent basis (see [MS15]), that

1

16
I1,Q5

4,{1,r5} = δ13 + δ15 + δ24 + δ26 + δ35 + δ46 + 2δ135 = R1,
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where R1 is the first ray on the list of extremal rays of Nef(M0,6) listed in [Swi11].

4.4. Even Quadrics. In Section 4.5 we give a Gromov-Witten divisor for an even quadric Q4 that
is not known to be spanned by a conformal blocks divisor.

Because of the cohomology class in the middle dimension, the classes for the even quadrics X =
Q2m can be different, depending on whether m is even or odd. Moreover, when m = 2, and m = 3,
differences in the symmetry causes the classes to behave differently than in the general case. To
compute classes, the following facts are used.

Lemma 4.6. (1) H ? ξ1 = H ? ξ2 = 1
2Hm+1 (for degree reasons there are no q terms).

(2) Hm ? Hm = H2m + 2q ·H0.
(3) If m is odd, then 〈ξ1, ξ2, [pt]〉1 = 0, and so 〈ξ1, ξ1, [pt]〉1 = 1. Therefore ξ1 ? ξ2 = [pt] and

ξ1 ? ξ1 = ξ2 ? ξ2 = q · 1
(4) If m is even then 〈ξ1, ξ1, [pt]〉1 = 0, and hence 〈ξ1, ξ2, [pt]〉1 = 1. Therefore ξ1 ? ξ2 = q · 1 and

ξ1 ? ξ1 = ξ2 ? ξ2 = [pt]

Proof. We need to compute ξ1 ? ξ2 and ξ1 ? ξ1 = ξ2 ? ξ2. But Hm ? Hm = (ξ1 + ξ2) ? (ξ1 + ξ2) =
2ξ1 ? ξ2 + (ξ1 ? ξ1 + ξ2 ? ξ2), Therefore the q · 1 terms in ξ1 ? ξ2 and ξ1 ? ξ1 add to 1, so one of
them should be one and the other 0. In the second case (the first is similar) pick linear spaces M
and M ′ in the quadric Qr in general position and with cohomology class ξ1. We get linear spaces
M,M ′ ⊆ C2m+2 of dimension m+ 1 each. The dimension of intersection of M and M ′ is congruent
modulo two to m+ 1, an odd number. Therefore we may assume M ∩M ′ is one dimensional. Now
we want to count lines L in the quadric through M , M ′ and a general point A in Qr. Consider the
span of A and M giving us a P = Pm+1 in P2m+1. The quadric restricted to P equals MT , T a
hyperplane in P which contains A. M ′ ∩ P is entirely contained in M , and we may assume that it
does not intersect T ∩M . The line L has to stay in T , and pass through M ′ ∩ P which does not
intersect T . This is not possible. �

4.5. An extremal Gromov-Witten class from an even quadric. Using intersections as before,
one can show that in the standard nonadjacent basis, for X = Q4

(4.1) I1,X2,{H1,ξ1,ξ1,ξ1,ξ2,H4} = [0, 1, 1, 0, 2, 0, 2, 0, 2, 1, 2, 1, 2, 0, 0, 2]

= [0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1] + [0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1] = R20 +R3.

The ray R3 is known to be spanned by any conformal blocks divisor of the form

R3 = ρ c1(V(slr+1, {ω3
1, `ω1, ωr−2, `ωr}, `)),

where r ≥ 3, ` ≥ 1, for some positive rational ρ. But R20 is not known to be spanned by any
conformal blocks divisor.

5. Two related questions

5.1. Cycles from Gromov-Witten theory of Blow-ups. Let X be a convex variety (e.g., a

homogenous projective variety) of dimension m, and π : X̃ → X the blow up of X at a point

P ∈ X. There is a natural inclusion π∗ : A∗(X)→ A∗(X̃) via pull-back of cycles. Note that π∗ ◦ π∗
is the identity on A∗(X) (here π∗ : A∗(X̃)→ A∗(X) is the natural push forward map on cycles).

It follows from [Gat01, Lemma 2.2] that if ~α is an n-tuple of effective cycles in A∗(X), and
β ∈ A1(X), as we write in case the codimension c cycle condition is satisfied by the triple (X,β, ~α),

(5.1) Ic,Xβ,{α1,...,αn} = Ic,X̃π∗β,{π∗α1,...,π∗αn}.
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Now let X = Pr. The cohomology of X is generated by cycle classes of linear subspaces Ld ⊂ Pr of
some codimension d. The cycle classes of these linear spaces are the same, denoted [Ld]. Now choose
one such linear subspace Ld ⊂ Pr of codimension d which passes through P , then π∗[Ld] = L′d + Td
where L′d ⊂ X̃ is the strict transform of Ld, and Td is the class of a dim(Ld) = r− d linear subspace

of the exceptional divisor, on X̃. Therefore if αi are cycle classes of positive dimensional subspaces
Lai in Pr of codimension ai (so no point classes), then one can rewrite Equation (5.1) as follows,

(5.2) Ic,Xβ,{α1,...,αn} = Ic,X̃π∗β,{π∗α1,...,π∗αn} = Ic,X̃π∗β,{L′ai+Tai}
n
i=1

=
∑

S⊂{1,...,n}

Ic,X̃π∗β,{L′ai}i∈S∪{Tai}i∈Sc
.

We have therefore decomposed the Gromov-Witten classes into a sum of (possibly non effective)
cycles on M0,n by expanding the above quantity (5.2).

5.2. Fedorchuk’s divisors. For
∑

i ai = (r + 1)(d+ 1), recall we have shown

(5.3) I1,P
r

d,~a ≡ c1(V(slr+1, {ωa1 , . . . , ωan}, 1)).

Assuming that none of the ai are zero, we consider the divisor

D′ = 2c1(V(slr+1, {ωa1 , . . . , ωan}, 1))−
∑

r+1|
∑
i∈I ai

∆I,J ,

which Fedorchuk [Fed14, Equation (7.0.17)] has proved is nef, and an effective sum of boundary
classes. However D′ is not known to be semi-ample (i.e., that some multiple is basepoint free). Using
[GG12, Proposition 1.3] 2c1(V(slr+1, {ωa1 , . . . , ωan}, 1)) = c1(V(sl2r+2, {ω2a1 , . . . , ω2an}, 1)), we can

rewrite the expression with Fedorchuk’s divisor as (with ~m = 2~a), I1,P
2r+1

d,~m = D′+
∑

r+1|
∑
i∈S ai

∆S,Sc .

Can D′ be characterized by Gromov-Witten theory of blow-ups, for example, is D′ equivalent to some
combination of terms in the following natural decomposition (use (5.2) for X = P2r+1)?

(5.4) I1,P
2r+1

d,2~m =
∑

S({1,...,n},

I1,X̃π∗β,{L′mi}i∈S∪{Tmi}i∈Sc
.

5.3. Divisors from the Gromov-Witten theory of pairs. Consider the case of a projective
space X = Pr and a hyperplane H in X. Let s > 1 and α = (α1, . . . , αs) be an s-tuple of positive
integers such that

∑s
i=1 αi = d. Define the space M0,n,s(X, d | α) = M0,n,s(H/X, d | α) to be the

closure in M0,n+s(X, d) of the set of irreducible stable maps (C, x1, . . . , xn, y1, . . . , ys, f) of degree d
to X with f(C) 6⊂ H such that the divisor f∗H on C ∼= P1 is equal to

∑
i αiyi (equality of cycles,

not just linear equivalence). This implies f(yi) ∈ H (since αi are assumed to be positive).
Vakil [Vak00] has shown that each irreducible component of M0,n,s(X, d | α) has the expected

dimension, which is equal to dimM0,n(X, d)−
∑s

i=1(αi−1). Let γ1, . . . , γn ∈ A∗(X) and µ1, . . . , µs ∈
A∗(H) and set

∑
i codim γj +

∑
j codimµi = τ . Then one can form the cycle

(ev∗x1 γ1 . . . ev∗xn γn) · (ev∗y1 µ1 . . . ev∗xs µs) ∩ [M0,n,s(X, d | α)] ∈ A∗(M0,n,s(X, d | α)),

which has homological degree dimM0,n,s(X, d | α)−τ , pushforward to M0,n+s the same degree, and

is a class of codimension c if dimM0,n,s(X, d | α)− τ = dimM0,n+s − c, which simplifies to

d(r + 1) + r + c =
∑

αi +
∑

γj +
∑

µi.

Let I
c,H/X
d,α (γ1 ⊗ . . .⊗ γn | µ1 ⊗ . . .⊗ µs) ∈ Ac(M0,n+s) denote the push-forward cycle. It is easy to

see that it is effective (by Kleiman’s theorem). However, it is not clear that I
c,H/X
d,α (γ1 ⊗ . . . ⊗ γn |
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µ1 ⊗ . . .⊗ µs) is basepoint free. To prove so using our methods so far, one would need to know the
dimension of fibers of M0,n,s(H/X, d | α)→M0,n+s, or show this map is flat.

Remark 5.1. Loci of enumerative significance inside (G/B)n were used in recent work of the first
author and J. Kiers [Bel19, BK18] to determine the extremal rays of the Q-cone of G-invariant
effective divisors on (G/B)n, see [BK18, Theorem 1.6]. These loci bear a resemblance to the Gromov-
Witten loci considered in this paper, in that we are varying the marked curve and keeping the point
in (G/B)n fixed here: In [BK18] one considers loci of points ~g ∈ (G/B)n such that there exist points
of G/P which satisfy enumerative constraints given by ~g. A point in G/P can be viewed as a degree
zero map from a fixed n-marked genus zero curve to G/P . Maps of non-zero degrees are considered
in the multiplicative/quantum generalizations of this problem. The Gromov-Witten loci are basepoint
free, whereas in [Bel19,BK18], the loci obtained (under some enumerative assumptions) are strongly
rigid [BK18, Theorem 1.6, (b)]. It is perhaps fruitful to look at “universal” GW enumerative loci in
M0,n × (G/B)n, but we have not pursued this here.
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