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Moduli spaces reveal how objects like varieties or schemes of a particular type behave in families.
Facts, unreachable by other means, can often be proved about such structures by considering them
as points in a moduli space. As they can possess rich combinatorial structure, moduli spaces
potentially provide new tools for making arguments about the objects which they parametrize.
For this reason, moduli spaces themselves can be valuable test varieties.

The moduli space Mg,n, parametrizing stable n-pointed curves of genus g, gives insight into
the study of smooth curves and their degenerations, and is a prototype for moduli of higher
dimensional varieties. Most beneficially, as curves arise in so many contexts, it is a meeting
ground, fundamentally touching a number of fields of mathematics and mathematical physics.

A natural goal when studying a space, like the moduli space of curves, is to characterize the
maps admitted by it. From this perspective, vector bundles are important, as their sections can
be thought of as functions; and globally generated bundles are particularly meaningful, as their
sections define morphisms. The identification of basepoint free loci as being characteristic classes
of particular globally generated vector bundles, or some other geometric loci, can give valuable
information about these morphisms.

In recent work, I have studied aspects of vector bundles onMg,n assembled from modules over
affine Lie algebras. Originally constructed in [TUY89], on M0,n, they are known to be globally
generated [Fak09]. These Verlinde bundles, or vector bundles of conformal blocks, have fibers
dual to generalized theta functions, and in some cases admit enumerative interpretations in terms
of Gromov-Witten loci [BG18]. I have used these relationships to better understand the objects
identified. In earlier work, I studied aspects the moduli space of curves, using Mori theory and
tropical geometry.

Here I briefly describe some of my results, arranged according to the following themes:

(1) Enumerative and geometric interpretations of conformal blocks
(2) Families of Conformal blocks divisors
(3) Compactifications and generalizations of the moduli space of curves
(4) Tropical compactifications and generalizations of the F-Conjecture

1. Enumerative and geometric interpretations of conformal blocks

In positive genus and type A, vector spaces of conformal blocks, taken together, form a finitely
generated graded ring whose Proj bears a natural relationship with (a family of) moduli stacks of
vector bundles over such curves [BG]. On the other hand, in genus zero, and in type A, one can
identify first Chern classes of the Verlinde bundles with certain Gromov-Witten loci [BG18]. These
relationships have interesting consequences.

Gromov-Witten loci of smooth projective homogeneous varieties and Verlinde bundles. In recent work
with P. Belkale [BG18], we study base point free loci on M0,n by making use of Gromov-Witten
theory for smooth projective homogeneous varieties. In particular, we give intersection formulas
to compute expressions for such classes, and work these out explicitly in the case of quadrics
and projective spaces. We prove that in the simplest case, basepoint free Gromov-Witten Loci on
M0,n defined from homogeneous varieties, are equivalent to conformal blocks divisors. Namely,
first Chern classes of Verlinde bundles from affine Lie algebras in type A at level 1, are equal to
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divisors obtained from base point free Gromov-Witten loci from projective space. This somewhat
surprising identification of these two very different sets of objects yields interesting dividends.
For instance, we learn that the Gromov-Witten divisors on M0,n coming from projective space
define a full dimensional subcone of the cone of nef divisors. On the other side, we get an
enumerative interpretation for the first Chern classes of conformal blocks in type A (at level
one) which generalizes Witten’s Dictionary, an enumerative interpretation for ranks for conformal
blocks in type A (at all levels).

Finite Generation of the determinant of cohomology and geometric interpretations of conformal blocks. For
G a simple, simply connected complex linear algebraic group, and C a stable curve of arithmetic
genus g ≥ 2, BunG(C) is the stack parameterizing principal G-bundles on C. Given a representation
G → GL(V), one can associate the determinant of cohomology line bundle D(V) on BunG(C). In
[BG, Theorem 1.1], we show, for G = SL(r), and the standard representation SL(r)→ GL(V),

A
C
• =
⊕

m∈Z≥0

H0(BunSL(r)(C),D(V)⊗m) is finitely generated.

The stacks BunSL(r)(C) are not proper, and so one does not expect even the constituent vector spaces
H0(BunSL(r)(C),D⊗m) are finite dimensional for any m.

For smooth C, the moduli space SUC(r) of semistable vector bundles of rank r on C with trivial
determinant, is isomorphic to Proj(AC

• ) [BL94, Fal94]. By varying C, one obtains a flat family over
Mg, and extensions toMg have been considered [Pan96, Sim94]. In [BG, Theorem 1.2], we give
an alternative completion of the family to Mg, where all fibers are normal projective varieties,
constructed using conformal blocks.

For smooth curves C, conformal blocks are also known to correspond to global sections of a
line bundle on the moduli space of G-bundles (and parabolic bundles in case of marked points)
[BL94, Fal94, KNR94, Pau96, LS97]. In [BG, Theorems 1.3 and 1.4], we show this is also true for
singular curves in some cases. Namely, if the level is sufficiently divisible, we prove that Proj(AC

• )
is generated in degree 1. In earlier work [BGK16], using intersection theory onMg, we were able
to see in some cases that this was not the case, so while Proj(AC

• ) may naturally lie in a weighted
projective space, fibers may not be interpreted at the global sections of a line bundle on a variety
in projective space, answering a long open question.

2. Families of conformal blocks divisors

The set of effective cycles of codimension c that nonnegatively intersect effective cycles of
dimension c on X form a cone called the nef cone, denoted Nefc(X). Morphisms give elements
of the cone of nef divisors, and while Nef1(X) is often difficult to describe, even its shape and
location with respect to the cone of effective divisors gives valuable information. For instance, the
cone of nef divisors and closed cone of effective divisors on Mg only touch at the origin [GKM02].
Consequently, there are no nontrivial morphisms (with connected fibers) from Mg to any lower
dimensional projective variety. In contrast, there is no understanding of the nontrivial fibrations
on M0,n, although it is conjectured that the cone of nef divisors is polyhedral.

Verlinde bundles on M0,n are known to be globally generated [Fak09], and so characteristic
classes of these bundles are nef. In fact, they generate full dimensional subcones of Nefc(X) for all
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c [Fak09, GM16]. As there are so many such classes, it is natural to try to understand how they
behave in families, and whether subcones generated by the conformal blocks cycles are polyhedral.

Vanishing and identities. Characteristic classes of vector bundles of conformal blocks are subject
to a number of types of identities: In [BGM15, Fak09], new rank and level identities are shown
to hold for first Chern classes at the critical level, and divisors are trivial above the critical level.
In [BG], we show Chern characters in type A are quasi-polynomial. In [BGM16] we show under
certain hypothesis, first Chern classes are subject to additive identities.

Questions of nonvanishing. Inspired by unexpected examples of trivial divisors, in [BGM16] we
introduce the problem of finding necessary and sufficient conditions to determine when the first
Chern class of a bundle is nontrivial. Necessary and sufficient conditions for nonvanishing are
found for sl2.

Full dimensional polyhedral subcones. In [GG12],we show the infinite set of type A, level one conformal
blocks divisors on M0,n spans a finitely generated, full-dimensional subcone of the cone of nef
divisors. In [Kaz14], my former postdoc A. Kazanova has shown that the infinite set of Sn invariant,
rank one, conformal blocks divisors for sln on M0,n, which she identifies, spans a finitely generated,
full-dimensional cone generated by level one divisors. In [Hob15], my student N. Hobson has
shown that infinite set of rank one, conformal blocks divisors for sl2 (and their generalizations) on
M0,n, which she identifies, spans a finitely generated, full-dimensional cone generated by level one
divisors.

3. Birational models and generalizations of the moduli space of curves

New birational models. The study of alternative compactifications of moduli spaces of pointed
curves has been important both in understanding families of curves, as well as giving an explicit
description of the birational geometry (in the sense of Mori theory) of Mg,n. Conformal blocks
have given new tools for providing modular interpretations of images of birational contractions.
These new moduli spaces have been shown to include for example, cyclic covers [Fed11], and
GIT quotients [GG12, Gia13, GJM13, GJMS13] generalizing Kapranov’s compactifications of M0,n

[Kap93a, Kap93b]. Images have modular interpretations, parametrizing weighted points, sup-
ported on Veronese curves.

Conformal blocks and the Torelli map from Mg to certain compactifications of Ag. While not known to
be base point free generally, conformal blocks divisors can sometimes be used to study moduli of
higher genus curves. In [Gib12], I identify one of the faces of the nef cone of Mg, consisting of
semi-ample divisors, showing they are pullbacks of ample divisors along the Torelli map from Mg

to certain types of compactifications of Ag, the moduli space of Abelian varieties of dimension g.

Pointed trees of projective spaces. In [CGK09], Chen, Krashen and I construct a space Td,n, whose
points correspond to n-pointed stable rooted trees of d-dimensional projective spaces, which for
d = 1, are (n + 1)-pointed stable rational curves. Smooth and projective, with boundary a smooth
normal crossings divisor, the space Td,n has an inductive construction analogous to but differing
from Keel’s construction of M0,n. We describe its Chow groups, Chow ring, Chow motive, and
Poincaré polynomials, and use this information to answer a question of Fulton and MacPherson.
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4. Tropical compactifications and a generalization of the F-Conjecture

The F-Conjecture asserts that a divisor on Mg,n is nef if and only if it nonnegatively intersects
one of a finite number of rational curves on Mg,n called F-Curves. In particular, the F-Conjecture
implies that Nef(Mg,n) is polyhedral, the convex hull of a finite number of extremal rays.

Reduction to genus zero. In [GKM02], we proved that the F-Conjecture on M0,g+n implies the F-
Conjecture on Mg,n. The conjecture holds for low g and n [KM13, GKM02, FG03, Gib09].

Reduction to log canonical. In [Gib09], I reduce the F−conjecture on Mg,n to showing that certain
divisors in M0,N for N ≤ g + n are equivalent to the sum of the canonical divisor plus an effective
divisor supported on the boundary. As an application, I give numerical criteria, which if satisfied
by a divisor D on Mg, show that D is nef. Using computer software, written by Krashen, this is
used to verify the conjecture for g ≤ 24.

Generalization to tropical compactifications. While generally not a toric variety, it is possible to embed
M0,n into a noncomplete toric variety X∆, and in [GM10], we give equations for M0,n in the Cox
ring of X∆. In [GM12], we study varieties X that, like M0,n, can be embedded in a toric variety X∆,
as a tropical compactification. We using X∆ to define cones which are upper and lower bounds
for Nef(X). For X = M0,n, we show that our upper bound cone U(M0,n), is the cone of divisors
predicted by the F-Conjecture to be equal to Nef(M0,n). In other words, this result generalizes the
F-Conjecture on M0,n to varieties that like M0,n, are tropical compactifications.
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