
Geometric interpretations for the
algebra of conformal blocks

Angela Gibney

The University of Georgia

2015



This talk is about recent work with
Prakash Belkale and Anna Kazanova.



Conformal blocks

informally, these are vector spaces V(C,~p) that one
can associate to any stable n-pointed curve (C, ~p)
of genus g.

They were originally constructed using integrable
representations of simple affine Lie algebras by
Tsuchiya, Ueno, Yamada [1989].



Conformal blocks

informally, these are vector spaces V(C,~p) that one
can associate to any stable n-pointed curve (C, ~p)
of genus g.

They were originally constructed using integrable
representations of simple affine Lie algebras by
Tsuchiya, Ueno, Yamada [1989].



Conformal blocks

informally, these are vector spaces V(C,~p) that one
can associate to any stable n-pointed curve (C, ~p)
of genus g.

They were originally constructed using integrable
representations of simple affine Lie algebras by
Tsuchiya, Ueno, Yamada [1989].



Vector spaces V(C,~p) = V (g, ~λ, `)(C,~p)

are determined by:

(1) a simple Lie algebra g

(2) a positive integer `;
(3) an n-tuple ~λ = (λ1, . . . , λn) of dominant integral

weights for g at level `.



Vector spaces V(C,~p) = V (g, ~λ, `)(C,~p)

are determined by:

(1) a simple Lie algebra g

(2) a positive integer `;
(3) an n-tuple ~λ = (λ1, . . . , λn) of dominant integral

weights for g at level `.



If C is a smooth curve:

There is a canonical isomorphism:

V ∗(C,~p)
∼= H0(X(C,~p), L(C,~p)),

where X(C,~p) is a projective variety and L(C,~p) is a
natural ample line bundle on it.

Beauville Laszlo 1994;
Faltings 1994;
Kumar, Narasimhan, Ramanathan 1994;
Laszlo, Sorger 1997;
Pauly 1996.



If C is a smooth curve:

There is a canonical isomorphism:

V ∗(C,~p)
∼= H0(X(C,~p), L(C,~p)),

where X(C,~p) is a projective variety and L(C,~p) is a
natural ample line bundle on it.

Beauville Laszlo 1994;
Faltings 1994;
Kumar, Narasimhan, Ramanathan 1994;
Laszlo, Sorger 1997;
Pauly 1996.



If C is a smooth curve:

There is a canonical isomorphism:

V ∗(C,~p)
∼= H0(X(C,~p), L(C,~p)),

where X(C,~p) is a projective variety and L(C,~p) is a
natural ample line bundle on it.

Beauville Laszlo 1994;
Faltings 1994;
Kumar, Narasimhan, Ramanathan 1994;
Laszlo, Sorger 1997;
Pauly 1996.



If C is a smooth curve:

There is a canonical isomorphism:

V ∗(C,~p)
∼= H0(X(C,~p), L(C,~p)),

where X(C,~p) is a projective variety and L(C,~p) is a
natural ample line bundle on it.

Beauville Laszlo 1994;
Faltings 1994;
Kumar, Narasimhan, Ramanathan 1994;

Laszlo, Sorger 1997;
Pauly 1996.



If C is a smooth curve:

There is a canonical isomorphism:

V ∗(C,~p)
∼= H0(X(C,~p), L(C,~p)),

where X(C,~p) is a projective variety and L(C,~p) is a
natural ample line bundle on it.

Beauville Laszlo 1994;
Faltings 1994;
Kumar, Narasimhan, Ramanathan 1994;
Laszlo, Sorger 1997;
Pauly 1996.



Crucially:

⊕
m∈Z>0

V [m]∗(C,~p)
∼=
⊕

m∈Z>0

H0(X(C,~p), L
⊗m
(C,~p)

),

V [m] = V (g,m~λ,m`).

for example, if

V[m] = V(slr+1, {m λ1, . . . ,m λn},m `),

then

m λi =
r∑

i=1
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On the other hand, one can compute the
dimensions of the vector spaces V [m] using the
Verlinde formula, and study X(C,~p).
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Another way to say this:

Given a point (C, ~p) ∈Mg,n, where C is SINGULAR,
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one always find a projective polarized pair
(X(C,~p), L(C,~p)) such that⊕

m∈Z>0

V [m]∗(C,~p)
∼=
⊕

m∈Z>0

H0(X(C,~p), L
⊗m
(C,~p)

)?

The answer is NO.

Counter examples are given by vector bundles of
conformal blocks.



Another way to say this:

Given a point (C, ~p) ∈Mg,n, where C is SINGULAR,
and a vector space of conformal blocks V(C,~p), can
one always find a projective polarized pair
(X(C,~p), L(C,~p)) such that

⊕
m∈Z>0

V [m]∗(C,~p)
∼=
⊕

m∈Z>0

H0(X(C,~p), L
⊗m
(C,~p)

)?

The answer is NO.

Counter examples are given by vector bundles of
conformal blocks.



Another way to say this:

Given a point (C, ~p) ∈Mg,n, where C is SINGULAR,
and a vector space of conformal blocks V(C,~p), can
one always find a projective polarized pair
(X(C,~p), L(C,~p)) such that⊕

m∈Z>0

V [m]∗(C,~p)
∼=
⊕

m∈Z>0

H0(X(C,~p), L
⊗m
(C,~p)

)?

The answer is NO.

Counter examples are given by vector bundles of
conformal blocks.



Another way to say this:

Given a point (C, ~p) ∈Mg,n, where C is SINGULAR,
and a vector space of conformal blocks V(C,~p), can
one always find a projective polarized pair
(X(C,~p), L(C,~p)) such that⊕

m∈Z>0

V [m]∗(C,~p)
∼=
⊕

m∈Z>0

H0(X(C,~p), L
⊗m
(C,~p)

)?

The answer is NO.

Counter examples are given by vector bundles of
conformal blocks.



Another way to say this:

Given a point (C, ~p) ∈Mg,n, where C is SINGULAR,
and a vector space of conformal blocks V(C,~p), can
one always find a projective polarized pair
(X(C,~p), L(C,~p)) such that⊕

m∈Z>0

V [m]∗(C,~p)
∼=
⊕

m∈Z>0

H0(X(C,~p), L
⊗m
(C,~p)

)?

The answer is NO.

Counter examples are given by vector bundles of
conformal blocks.



Vector bundles of conformal blocks

V = V(g, ~λ, `) onMg,n

given by:

(1) a simple Lie algebra g

(2) a positive integer `;
(3) an n-tuple

~λ = (λ1, . . . , λn) of
dominant integral
weights for g at level `.

At (C, ~p) ∈Mg,n,

V|(C,~p) = V(C,~p).

For g = 0 the bundles are
globally generated and
so c1(V) are base point
free.

Fakhruddin (improved by
Mukhopadhyay) (g=0),
and Marian, Oprea,
Pandharipande (g >0)
have given formulas for
c1(V).



Vector bundles of conformal blocks

V = V(g, ~λ, `) onMg,n

given by:

(1) a simple Lie algebra g

(2) a positive integer `;
(3) an n-tuple

~λ = (λ1, . . . , λn) of
dominant integral
weights for g at level `.

At (C, ~p) ∈Mg,n,

V|(C,~p) = V(C,~p).

For g = 0 the bundles are
globally generated and
so c1(V) are base point
free.

Fakhruddin (improved by
Mukhopadhyay) (g=0),
and Marian, Oprea,
Pandharipande (g >0)
have given formulas for
c1(V).



Vector bundles of conformal blocks

V = V(g, ~λ, `) onMg,n

given by:

(1) a simple Lie algebra g

(2) a positive integer `;
(3) an n-tuple

~λ = (λ1, . . . , λn) of
dominant integral
weights for g at level `.

At (C, ~p) ∈Mg,n,

V|(C,~p) = V(C,~p).

For g = 0 the bundles are
globally generated and
so c1(V) are base point
free.

Fakhruddin (improved by
Mukhopadhyay) (g=0),
and Marian, Oprea,
Pandharipande (g >0)
have given formulas for
c1(V).



Vector bundles of conformal blocks

V = V(g, ~λ, `) onMg,n

given by:

(1) a simple Lie algebra g

(2) a positive integer `;
(3) an n-tuple

~λ = (λ1, . . . , λn) of
dominant integral
weights for g at level `.

At (C, ~p) ∈Mg,n,

V|(C,~p) = V(C,~p).

For g = 0 the bundles are
globally generated and
so c1(V) are base point
free.

Fakhruddin (improved by
Mukhopadhyay) (g=0),
and Marian, Oprea,
Pandharipande (g >0)
have given formulas for
c1(V).



Vector bundles of conformal blocks

V = V(g, ~λ, `) onMg,n

given by:

(1) a simple Lie algebra g

(2) a positive integer `;
(3) an n-tuple

~λ = (λ1, . . . , λn) of
dominant integral
weights for g at level `.

At (C, ~p) ∈Mg,n,

V|(C,~p) = V(C,~p).

For g = 0 the bundles are
globally generated and
so c1(V) are base point
free.

Fakhruddin (improved by
Mukhopadhyay) (g=0),
and Marian, Oprea,
Pandharipande (g >0)
have given formulas for
c1(V).



Theorem (Belkale, G, Kazanova)
There are vector bundles of conformal blocks V on
Mg,n, and points (C, ~p) ∈Mg,n, for which there are
no polarized varieties (X(C,~p), L(C,~p)) such that⊕

m

V [m]∗(C,~p)
∼=
⊕

m

H0(X(C,~p), L
⊗m
(C,~p)

)

holds.
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to give obstructions to geometric interpretations.

We did this in cases where if geometric
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useful information about the polarized varieties
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at boundary points (C, ~p) ∈Mg,n.

For example, we found obstructions in case
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Theorem (Belkale, G, Kazanova)
Suppose that V has ∆-invariant zero rank scaling,
and that for all (C, ~p), there are polarized pairs
(X(C,~p), L(C,~p)) such that⊕
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∼=
⊕
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).

Then for m ≥ 1,

c1(V[m]) =
D∑

i=1

αi(m)c1(V[i]), (1)

the αi(m) are (explicitly given) polynomials in m, and
D is the volume of V.
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If there were a geometric interpretation for the
algebra of conformal blocks⊕

m∈Z>0

V(sl2, ∅,m)|∗C, at all points C ∈M2

rkV(sl2, ∅,m) =

(
m + 3

3

)
=⇒ V has (P3,O(1)) -scaling,

and

c1(V[m]) =

(
m + 3

4

)
c1(V). (2)

we show Eq 2 fails by intersecting with F-curves.
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[Fujita] L is very ample, and embeds X into a
projective space whose image has

deg(X ) = h0(X , L)− dim(X ) = 1 + codim(X ).

For any nondegenerate variety X ⊂ PN

deg(X ) ≥ 1 + codim(X ).
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(2) Projective varieties of minimal degree are known:
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2. quadric hypersurfaces;
3. rational normal scrolls;
4. Veronese surfaces; and
5. Cones over the above.
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(3) The function

f (m) = rkV[m]

determines the Delta invariant

∆(X , L) = dim(X ) + Ldim(X) − h0(X , L).

1. f (1) = h0(X , L),

2. deg(f (m)) = dim(X ); and

3. c · deg(f (m))! = Ldim(X),
where c is the leading coefficient of f (m).

Definition

VolV = Ldim(X).
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For example:

0. rk(V[m]) = dm + 1, then V has (P1,O(d))-scaling;

1. rk(V[m]) =
(d+m

m

)
, V has (Pd ,O(1))-scaling;

2. rk(V[m]) = 2
(m+d−1

d

)
+
(m+d−1

d−1

)
,

V has quadric hypersurface scaling;

3. rk(V[m]) = (m + 1)(1 + m(a+b)
2 ),

V has (S(a,b),O(1)) scaling1;

4. rk(V[m]) = (m + 1)(2m + 1),
V has Veronese surface scaling;

1there are more general scrolls S(a1, . . . ,ad) = (P(E),O(1))



Definition
We say that V has ∆-invariant zero rank scaling if
∆(X(C,~p), L(C,~p)) = 0 for (C, ~p) ∈Mg,n such that

V|∗(C,~p)
∼= H0(X(C,~p), L(C,~p)).



We checked many many examples, and found that
the predicted scaling identities held except possibly
on particular loci.
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We have similar results for bundles that don’t have
∆-invariant zero rank scaling.

For example, pairs (X , L) isomorphic to Coble’s
Quartic Hypersurface in P7, and Coble’s Cubic
hypersurface in P8 [BGK], and more recently in work
with Prakash we look at other examples as well.
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We also have some results which give conditions that
guarantee geometric interpretations do exist.



Theorem (BGK)
Let V = V(slr+1, ~λ, `) onMg,n. If rk(V[m]) =

(m+d
d

)
∀m,

then (
m + d
d + 1

)
c1(V) = c1(V[m]) + Dm,

where Dm is an effective Cartier divisor supported on
the boundary ofMg,n. Geometric extensions hold if
and only if Dm = 0.
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Original Conjecture:

Conjecture (Belkale, G, Kazanova)
Given a vector bundle of conformal blocks V of type
A onMg,n, for every x = (C, ~p) ∈ Z =Mrt

g,n ∪∆0
irr , there

is a polarized pair (Xx ,Lx) such that⊕
m∈Z>0

V|∗x ∼=
⊕

m∈Z>0

H0(Xx ,Lm
x ).

Mrt
g,n is the set of points inMg,n with one irreducible

component having genus g.

For g = 0, Z =M0,n.
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Modification

Conjecture (Belkale, G)
Let V = V(slr , ~λ, `), and let x = [C] ∈Mg, g ≥ 2 be any
(closed) point corresponding to a nodal curve C.
Then there is a projective variety Xx and a big
(equivalent to an ample plus effective) line bundle
Lx on Xx such that⊕

m≥0

V[m]|∗x ∼=
⊕
m̃≥0

H0(Xx ,Lm̃
x ),

where m̃ = m if C is an irreducible curve, and m̃ = m
2

otherwise. If r = 2, then Lx is ample.
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Work in progress

Expected Theorem (Belkale, G)
Let V = V(g, ~λ, `) be any vector bundle of conformal
blocks onMg,n, and (C, ~p) ∈Mg,n any point. There is
an isomorphism of algebras⊕
m∈Z≥0

V[m]|∗(C;~p)
∼=
⊕

m∈Z≥0

H0(ParbunG(C, ~p),LG(C, ~p)⊗m),

ParbunG(C, ~p) quasi-parabolic G-bundles on C,
LG(C, ~p) natural line bundle.
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Thank you!


