
ON HIGHER CHERN CLASSES OF VECTOR BUNDLES OF CONFORMAL BLOCKS

A. GIBNEY AND S. MUKHOPADHYAY

Abstract. In this short note, with an aim towards giving examples of elements in the Pliant cone,
we give a number of vanishing results and identities for higher Chern classes of vector bundles of
conformal blocks on M0,n. As an application, we give a full dimensional subcone of the Pliant cone
whose generators are extremal in the cone of nef cycles.

1. Introduction

The pseudo-effective cone Effm(X) is the closure of the cone generated by classes of m-dimensional
subvarieties on a projective variety X. If X is smooth, then one can define higher codimension
analogues of cones of nef divisors by taking Nefm(X) to be dual to Effm(X). Many properties held by
these cones when m = 1 fail more generally [Pet09, Voi10, DELV10, FL14]. To more accurately cap-
ture the properties of cones of nef divisors, Fulger and Lehmann have introduced three sub-cones:
the Pliant cone, the base-point free cone, and the universally pseudoeffective cone. The smallest
of these; the Pliant cone Plm(X) ⊂ Nefm(X) is the closure of the cone generated by monomials in
Schur classes of globally generated vector bundles on X.

The stack Mg,n, parametrizing flat families of stable n-pointed curves of genus g, carries vector
bundlesV, constructed using representation theory [TUY89]. When g = 0, the bundles are globally
generated, and higher Chern classes give rise to classes in the pliant cone on the moduli space M0,n.

Here we explain how a number of vanishing results and identities governing first Chern classes
of vector bundles of conformal blocks on M0,n, may be extended to higher Chern classes:

• in Theorem 3.1, using an expression for the total Chern character Ch(V) given in [MOP+14],
we give an explicit formula for the m-th Chern class cm(V) on M0,n;
• in Section 4, give additive and critical level identities governing higher Chern classes; and
• in Section 5, we give criteria for higher Chern classes to be extremal in the nef cone.

Using Fakhruddin’s basis for A1(M0,n), in Section 6.1 we form a full dimensional sub-cone of the
Pliant cone Plm(M0,n) consisting of extremal classes in Nefm(M0,n). With a basis for A1(M0,n)Sn , from
[AGSS11] consisting of classes that span extremal rays of the Sn-invariant cone of nef divisors, in
Section 6.2, we construct a full dimensional sub-cone of the Sn-invariant Pliant cone Plm(M0,n)Sn . As
with the generators of these subcone of Am(M0,n), and Am(M0,n)Sn , we have seen in many examples,
that m-th Chern classes are often a product of first Chern classes. This is not expected: If V is a
vector bundle with a projectively flat connection on a projective variety X with trivial fundamental
group, then cm(V) = 1

Rm
(R
m
)

c1(V)m, where R = rk(V). The spaces M0,n are simply connected [BP00],
and vector bundles of conformal blocks carry a projectively flat connection on the interior M0,n

[TUY89]. The connection for a vector bundle of conformal blocks on M0,n does not extend to a
projectively flat connection on the boundary.
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2. Background and notation

The facts we use are given, primarily in the notation of [Fak12]. Original sources for the
construction are [Tsu93, TUY89]. The stack M0,n is represented by the fine moduli space M0,n, and
we work on this space throughout.

2.1. Basic ingredients. A vector bundle of conformal blocks V(g, ~λ, `) is determined by a simple
Lie algebra g, a positive integer `, and an n-tuple ~λ = (λ1, . . . , λn) of dominant weights for g at
level `. Let h ⊂ g be a Cartan subalgebra. A dominant integral weight λi ∈ h

∗ is at level ` as long
as (θ, λi) ≤ `, where θ ∈ h∗ is the highest root of g, and ( , ) is the Killing form, normalized so that
(θ, θ) = 2. We denote the set dominant integral weights of g of level ` by P`(g). For each weight λi,
there is a unique and irreducible finite dimensional g-module Vλi .

2.2. Vector spaces of conformal blocks. Let g be a simple Lie algebra, and let ĝ := g ⊗ C((t)) ⊕ Cc,
be the corresponding affine Kac-Moody Lie algebra. Here, c belongs to the center of ĝ, and the Lie
bracket of ĝ is given by the following rule:

[X ⊗ f ,Y ⊗ g] = [X,Y] ⊗ f g + (X,Y) Rest=0 g
d f
dt

c,

where X, Y are elements of the Lie algebra g and f , g are in C((t)). For each λ ∈ P`(g), there exists
and unique irreducible, highest weight, integrable, ĝ-module Hλ with the following properties:

• Hλ is infinite dimensional;
• c acts on Hλ by a scalar `; and
• Vλ ↪→ Hλ.

Let C be a connected projective curve over C, and let U ⊂ C an open set. By g(U) we mean the
Lie algebra g ⊗ OC(U). Let p1, . . ., pn ∈ C be n smooth points and let λ1, . . . , λn ∈ P`(g). Choose
a local coordinate ξi at each point pi, and denote by fpi the Laurant expansion of any element
f ∈ OC(C \{p1, . . . , pn}). Then for each i, there is a ring homomorphism

OC(C \{p1, . . . , pn})→ C((ξi)), f 7→ fpi ,

Since the sum of the residues of a meromorphic one-form is zero, it follows that there is an
embedding of Lie algebras

g(C \{p1, . . . , pn}) ↪→ ĝn =

n⊕
i=1

g ⊗ C((ξi)) ⊕ Cc, X⊗ f 7→ (X⊗ fp1 , . . . ,X⊗ fpn , 0).

Set H~λ
= Hλ1 ⊗ · · · ⊗ Hλn . There is a natural ĝn-module structure on H~λ

; and so it inherits a
g(C \{p1, . . . , pn})-module structure.

Definition 2.1. Let a be a Lie algebra. Let V and W be two a-modules. The space of coinvariants [V⊗W]a
is equal to the quotient of V⊗W by the subspace spanned by the elements of the form X v ⊗ w + v ⊗ X w,
where X ∈ a, v ∈ V, and w ∈W.

Definition 2.2. With the notation above, set

V(g, ~λ, `)|(C;~p) = [H~λ
]g(C \{p1,...,pn}), and V(g, ~λ, `)|†(C;~p) = Homg(C \{p1,...,pn})(H~λ

,C),

where C is considered a trivial g(C \{p1, . . . , pn})-module. That is,V(g, ~λ, `)|(C;~p) is the space of coinvariants
of the g(C \ {p1, . . . , pn})-module H~λ

, which is the largest quotient of H~λ
on which g(C \ {p1, . . . , pn}) acts
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trivially. This is equal to the quotient of Hλ1 ⊗ · · · ⊗Hλn by the subspace spanned by elements of the form
n∑

i=1

v1 ⊗ · · · ⊗ vi−1 ⊗ (X⊗ fpi) · vi ⊗ vi+1 ⊗ · · · ⊗ vn,

where X⊗ f ∈ g(C \ {p1, . . . , pn}), and vi ∈ Hλi for all i ∈ {1, . . . ,n}.

2.3. Brief sketch of construction of the sheaf of conformal blocks. One can carry the construction
done above out in families. To begin with, we let S = Spec(A) for some k-algebra A, and π : C→ S
a proper flat family of curves whose fibers have at worst ordinary double point singularities. For
1 ≤ i ≤ n, let si : S −→ C be sections of π whose images are disjoint and contained in the smooth
locus ofπ. In particular, over a point s ∈ S, we have an n-pointed curve (Cs; s1(s), . . . , sn(s)). We note
that for each i there are isomorphisms ÔC,ηi

∼
→ A[[ξi]]. where ηi is the generic point of the image

si(S). The inclusion OC,ηi ↪→ ÔC,ηi , induces, for each i ∈ {1, . . . ,n}, inclusions FracField(OC,ηi) ↪→
FracField(ÔC,ηi) � A((ξi)). For U = C\∪n

i=1ηi, we associate to C→ S the Lie algebra g(U) = g⊗kOC(U),
with Lie bracket given by [X⊗ f ,Y⊗g] = [X,Y]g ⊗ f g. Using the isomorphisms, there are maps
OC(U)→ A((ξi)) which in turn give rise to injective maps

g(U)→
( n⊕

i=1

g ⊗k A((ξi))
)
⊕ Cc � ĝn ⊗k A .

One can show that g(U) is a Lie sub-algebra of ĝn ⊗k A, and H~λ
⊗k A is a representation of ĝn ⊗k A.

Definition 2.3. With the notation above, set

V(g, ~λ, `)|(π:C→S;{si:S→C}ni=1) = [H~λ
⊗A]g(U),

and
V(g, ~λ, `)|†(π:C→S;{si:S→C}ni=1) = Homg(U)(H~λ

⊗A,A),

where A is considered a trivial g(U)-module.

To define V(g, ~λ, `)|(π:C→S;{si:S→C}ni=1) for in case S is not affine, take an open affine covering and
extend by the sheaf property. In this description, the open set C\∪n

i=1ηi has been implicitly assumed
to be affine. But this premise can be removed using a descent argument: See [Fak12, Prop 2.1], and
the discussion following.

2.4. Global generation in case g = 0. The bundlesV(g, ~λ, `) are globally generated on M0,n: There
is a surjection

A(g, ~λ) = A
g,~λ
×M0,n � V(g, ~λ, `), where A

g,~λ
= [⊗n

i=1 Vλi]g,

is the vector space of coinvariants, the largest quotient space of ⊗n
i=1 Vλi on which g acts trivially.

This gives rise to a morphism fV from M0,n to the Grassmannian of rkV(g, ~λ, `) quotients of the
vector space A

g,~λ
:

(1) M0,n
fV
−→ G = Grassquo(rkV(g, ~λ, `),dim A

g,~λ
), x 7→ (A

g,~λ
� V(g, ~λ, `)|x).

Definition 2.4. The first Chern class, called the conformal blocks divisor

D(g, ~λ, `) = c1(V(g, ~λ, `)),

gives the composition of fV with the Plücker embedding p of the Grassmannian G into P = PN−1, where

N =
(dim A

g,~λ

rkV(g,~λ)

)
.
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2.4.1. Global generation and Chern classes. Global generation implies therefore that the higher Chern
classes are nef-they nonnegatively intersect all effective cycles of complementary dimension on
M0,n. One way to see that global generation fails on Mg,n for g ≥ 1, is to exhibit effective curves
on which the first Chern classes have negative degree. This was first done by Fakhruddin for sl2
bundles using curves that arise as the images of maps from M1,1.

3. Higher Chern classes from Chern character formula

In [MOP+14], a beautiful and simple formula for the total Chern character of a general vector
bundle of conformal blocks on Mg,n for all g, and all n is given. Here we use this to find an explicit
formula for ck(V) on M0,n.

Given a vector bundle of conformal blocks V = V(g, ~λ, `), following [MOP+14], we set w(λ) =
(λ,λ+2ρ)
2(g∗+`) , where g∗ is the dual Coxeter number, and ρ is half of the sum of the positive roots.

Theorem 3.1. The m-th Chern class ofV = V(g, ~λ, `), is given by the formula:

(2) cm(V) = (−1)m
∑

(m1,...,m j)∈Z
j
≥0

m1+2m2+···+ jm j=m

j∏
k=1

(−pk(V))mk

mk!kmk
,

(3) pk(V) =
∑

~k=(k1,...,kn+m)∈Zn+m
≥0 ,

∑n+m
i=1 ki=k,

I=(I1,...,Im)

β
~k
I ψ

k1
1 ψ

k2
2 · · ·ψ

kn
n δ

kn+1
I1
· · · δkn+m

Im
,

for I = (I1, . . . , Im), sets I1, . . ., Im ( {1, . . . ,n} are nested or disjoint, 1 ∈ (I1 ∪ · · · ∪ Im)c,

(4) β
~k
I = (−1)

∑m
j=1 kn+ j

(
k

k1, . . . , kn+m

) ∑
(µ1,...,µm)
∈P`(g)m

∏
1≤i≤n
1≤ j≤m

w(λi)ki w(µ j)kn+ j rkV({λ(I j) ∪ µ j}) rkV({λ(IC
j ) ∪ µ∗j}),

where µ∗ ∈ P`(g) be the element with the property that −µ∗ is the lowest weight of the weight space Vµ.

Proof. We will use that [Ch(V)]k = 1
k! pk(V), where pk(V) are the k-th power sums of the Chern roots

of the vector bundle, and Equation (2) which is proved in a number of places, eg. [Mea92]. As we
show, the asserted formula then follows from [MOP+14]. In particular, we will show that one can
obtain the explicit formula for the power sums that is given in Equation (3).

So for example, In particular, it follows that [ch(V)]1 = c1(V). We can use this to recover
Fakhruddin’s formula for the first Chern class of a vector bundle V of conformal blocks on M0,n

from the formula for the total Chern Character Ch(V) given in [MOP+14].
ForV = V(g, ~λ, `), on M0,n, by [MOP+14, Theorem 1],

Ch(V) =
∑
Γ,~µ

(iΓ)∗
( ∏

`∈Γ
legs

cont(`)
∏
ν∈Γ

vertices

cont(ν)
∏

e∈Γ
edges

cont(e)
)
,

where one sums over all graphs Γ dual to stable n-pointed curves of genus zero, and vectors ~mu of
attaching weights. For the degree one part [Ch(V)]1, we expand the power series, given Γ:∏

`∈Γ
legs

cont(`) =

n∏
i=1

exp(w(λi)ψi) = exp(
n∑

i=1

w(λi)ψi).
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The other power series that contribute come from the edges. To begin with, we write

f (t) =
1 − ewt

t
=

1 −
∑
∞

m=0
(wt)m

m!

t
= −

∞∑
m=0

wm+1tm

(m + 1)!
=

∞∑
m=0

(−1)m+1wm+1(−t)m

(m + 1)!
.

Now given an edge e ∈ Γ, with corresponding attaching weight µe,

cont(e) = f (ψ′e + ψe”) =

∞∑
m=0

(−1)m+1w(µe)m+1(−ψ′e − ψe”)m

(m + 1)!

and using the key identity from [MOP+14, bottom page 15] the image iΓ∗ is
∞∑

m=0

(−1)m+1w(µe)m+1(δe)m+1

(m + 1)!
=

∞∑
m=0

(−w(µe) δe)m+1

(m + 1)!
= exp(−w(µe) δe).

So given a vector ~µ = (µe1 , . . . , µem) of attaching weights for Γ,∏
e∈Γ

edges

cont(e) = exp(
m∑

j=1

(−w(µe j) δe j)).

(5) Ch(V) =
∑

Γ with m edges
~µ={µe1 ,...,µem }∈P`(g)m

∏
ν∈Γ

vertices

cont(ν) exp(
n∑

i=1

w(λi)ψi +

m∑
j=1

(−w(µe j) δe j))

=
∑

Γ with m edges
~µ={µe1 ,...,µem }∈P`(g)m

∏
ν∈Γ

vertices

cont(ν)
∞∑

k=0

1
k!

∑
k1 ,...,kn+m≥0∑n+m

i=1 ki=k

(
k

k1, . . . , kn+m

) n∏
i=1

(w(λi) ψi)ki

n+m∏
j=n+1

(−w(µe j) δe j)
k j .

For instance, in order to solve for the degree one part [Ch(V)]1, we are concerned with summing
over trees having either zero or one edges. Doing so, one obtains:

(6) [Ch(V)]1 = rk(V)
n∑

i=1

w(λi)ψi −
∑

Γ with 1 edge e
µe∈P`(g)

rk(V(µe)) rk(V(µ∗e)) w(µe) δe

= rk(V)
n∑

i=1

w(λi)ψi −
∑
I⊂N,

µ∈P`(g)

w(µ) rk(V(µ)) rk(V(µ)) δI,

since, if δe is the boundary divisor δI corresponding to the 1-edge stable graph Γ with attaching
weight µe on the side with points labeled by I and µ∗e on the side with points labeled by IC, then

V(µe) = V(g, {λi|i ∈ I} ∪ {µe}, `), and V(µ∗e) = V(g, {λi|i ∈ IC
} ∪ {µ∗e}, `).

Equation (6) is Fakhruddin’s formula [Fak12, Muk16]. Similarly, for the degree k part [Ch(V)]k,
we sum over trees having at most k edges. By doing this, one obtains

[Ch(V)]k =
∑

~k=(k1 ,...,kn+m)∈Zn+m
≥0 ,

∑n+m
i=1 ki=k,

I=(I1,...,Im), condition?

α
~k
I ψ

k1
1 ψ

k2
2 · · ·ψ

kn
n δ

kn+1
I1
· · · δkn+m

Im
,
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and such that for k(n) =
∑n

i=1 ki, and k(m) =
∑m

j=1 kn+ j:

α
~k
I =

(−1)k(m)

k!

(
k

k1, . . . , kn+m

) ∑
~µ=(µ1 ,...,µm}
∈P`(g)m

n∏
i=1

w(λi)ki

m∏
j=1

w(µ j)kn+ j rkV({λ(I j) ∪ µ j}) rkV({λ(IC
j ) ∪ µ∗j}).

Since [Ch(V)]k = 1
k! pk(V), multiplying through by k! to obtain β~kI , we are finished. �

Remark 3.2. (1) Using a theorem of [EV80], N. Fakhruddin, in [Fak12, Theorem 3.2] has given a
formula for the Newton classes Nm(V) of a conformal blocks bundleV on M0,n: Namely

Nm(V) = (−1)m
∑

α1+···+αs=m

(
m
α

)
Tr

(
Γα1

1 ◦ · · · ◦ Γαs
s

)
[B1]α1 . . . [Bs]αs ,

where Bi, i = 1,. . ., s are boundary components, and Γi is the residue of the KZ connection along Bi.
The matrices Γi’s have also been computed in [Fak12] explicitly.

(2) In [BG16], Belkale and Gibney show that The Chern classes ofV(slr, `) on Mg are quasi-polynomial
in l for sufficiently large `. It would be interesting to know if the same is true on M0,n.

4. Additive and critical level identities for higher Chern classes

In [BGM14a, Thm 1.3], it was proved that for bundles in type A, all first Chern classes vanish
above what is called the critical level. Bundles in type A at the critical level have so-called partner
bundles, and in [BGM14a, Prop 1.6] it was shown that first Chern classes of partner bundles are
equal. We have shown the k-th Chern class of any bundle at the critical level can be written as a
sum of products of Chern classes of its critical level partner. By [BGM14a, Prop 1.6], the sum of
the ranks of the critical level partner bundles equal the rank of the bundle of coinvariants. By our
analogue for higher Chern classes, ifV is a critical level bundle, and its partner has rank one, ck(V)
is a product of first Chern classes. In [BGM14b, Prop 4.1], it was proved that if certain ranks are
satisfied, additive relations hold for first Chern classes. We have shown an additive identity for
higher Chern classes holds.

Proposition 4.1. For ~ν1 ∈ P`1(g), ~µ1 ∈ Pm1(g), and ~ν1 + ~µ1 ∈ P`1+m1(g), suppose:

rk(V(g, ~ν1, `1)) = 1, and rk(V(g, ~µ1,m1)) = rk(V(g, ~ν1 + ~µ1, `1 + m1)) = δ.

Then

cm(V(g, ~ν1 + ~µ1, `1 + m1)) =

m∑
k=0

(
m + δ − k

k

)
c1(V(g, ~ν1, `1))k cm−k(V(g, ~µ1,m1)).

Proof. This follows from the fact that Chern characters are multiplicative for tensor products, and
by [BGM14b, Prop 2.1], which gives thatV(g, ~ν1 + ~µ1, `1 + m1) � V(g, ~ν1, `1) ⊗V(g, ~µ1,m1). �

Example 4.2. On M0,7, the bundle V1 = V(sl3, {(2ω1)2, (ω1)5
}, 2) has rank 3, V2 = V(sl3, {(ω1)6, 0}, 1)

has rank 1, andV3 = V(sl3, {(3ω1)2, (2ω1)4, ω1}, 3) has rank 3. Using Proposition 4.1, c2(V3) = c2(V1) +

3c1(V1)c1(V2) + c1(V2)2. In fact, this simplifies further, as we’ll see later in Example 4.5.

Definition 4.3. ([BGM14a]) Let ~λ = (λ1, . . . , λn) be an n-tuple of normalized integral weights for
sl(r + 1), assume that r + 1 divides

∑n
i=1 |λi|, and define the critical level for the pair (sl(r + 1), ~λ) to be

CL(sl(r + 1), ~λ) = −1 +
1

r + 1

n∑
i=1

|λi|.
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A vector bundle V(g, ~λ, `)(sl(r + 1), `) is said to be a critical level bundle if ` = CL(sl(r + 1), ~λ) and
~λ ∈ P`(sl(r + 1))n. We say thatV(sl(r + 1), ~λ, `) is above the critical level if ` > CL(sl(r + 1), ~λ), and below
the critical level if ` < CL(sl(r + 1), ~λ).

By [BGM14a, Proposition 1.3], if ` > CL(sl(r + 1), ~λ), then V(sl(r + 1), ~λ, `) is a constant bun-
dle and so all of its Chern classes are trivial. On the other hand, if ` = CL(sl(r + 1), ~λ), then
V(sl(r + 1), ~λ, `) has a partner bundle V(sl(` + 1), ~λT, r) where the weight λT

i is obtained by taking
the transpose of the Young diagram associated to the weight λi. Moreover, by [BGM14a, Proposi-
tion 1.6 (b)]:

c1(V(sl(r + 1), ~λ, `)) = c1(V(sl(` + 1), ~λT, r)).

This was discovered by Fakhruddin for r = 1 [Fak12].
The following is a critical level identity for higher Chern classes:

Proposition 4.4. IfV(sl(r + 1), ~λ, `) andV(sl(` + 1), ~λT, r) are critical level partner bundles, then

(7) ck(V(sl(r + 1), ~λ, `)) =∑
1≤n1 ,··· ,nj≤k∑ j

i=1 i·ni=k

(−1)k−(n1+···+n j)
( ∑ j

i=1 ni

n1, · · · ,n j

)
c1(V(sl(` + 1), ~λT, r))n1 · · · c j(V(sl(` + 1), ~λT, r))n j .

Proof. In [BGM14a] it was shown that one has the short exact sequence

0 −→ V(sl(r + 1), ~λ, `)∗ ↪→ A∗
sl(r+1),~λ

� V(sl(` + 1), ~λT, r) −→ 0.

The bundleA∗
sl(r+1),~λ

is constant, and so it’s Chern classes are all zero. Now the result follows from

the fact that Chern polynomials are multiplicative in short exact sequences.
�

Example 4.5. In Example 4.2 we saw by Proposition 4.1, c2(V3) = c2(V1) + 3c1(V1)c1(V2) + c1(V2)2.
SinceV1 is at the critical level, we can write this as c2(V3) = c1(V1)2 + 3c1(V1)c1(V2) + c1(V2)2.

Example 4.6. For any critical level bundleV(sl(2), ~λ, `),

ck(V(sl(2), ~λ, `)) = c1(V(sl(` + 1), ~λT, 1))k = c1(V(sl(2), ~λ, `))k.

It’s CL partner isV(sl(` + 1), ~λT, 1), and any level one bundle in type A has rank one by [Fak12].

Example 4.7. In [Kaz14], Kazanova proved that all Sn-invariant bundles for sl(n) on M0,n of rank one are
of the formV(sl(n), λn, `), where λ = (` −m)ωi + mωi+1. For the bundle to be at the critical level we must
also have i = 1 and m = 1. The dual partner is of the formV(sl(r + 1), (ω1 +ωr)n,n−1), and by [BGM14a]
the partner will have rank equal to the rank of the bundle of coinvariants minus one (In particular, for these
bundles, ranks are ???). One has:

ck(V(sl(r + 1), (ω1 +ωr)n,n−1)) = c1(V(sl(r + 1), (ω1 +ωr)n,n−1))k = c1(V(sl(n), ((r−1)ω1 +ω2)n, r))k.

She also proved that one can express such divisors as sums of first Chern classes of level one bundles:

c1(V(sl(n), ((r−1)ω1+ω2)n, r)) = (r−1)c1(V(sl(n), (ω1)n, 1))+c1(V(sl(n), (ω2)n, 1)) = c1(V((sl(n), ωn
2 , 1)),

since c1(V(sl(n), (ω1)n, 1)) is above the critical level, and hence is zero. So

ck(V(sl(r + 1), (ω1 + ωr)n,n − 1)) = c1(V((sl(n), ωn
2 , 1))k, for all r.

7



In particular, this gives an infinite family of Sn -invariant bundles of rank equal to codimension one in its
coinvariants, whose higher Chern classes are all powers of first Chern classes of the same bundle of level one.

Example 4.8. On M0,n we have that, for any critical level bundle V(sl(2), {mω1, . . . ,mω1}, 2m − 1),
satisfying (fill in definition of weight content maximal for sl2), then

ck(V(sl(2), {mω1, . . . ,mω1}, 2m − 1)) = mkc1(V(sl(2), {ω1, . . . , ω1}, 1))k.

Indeed, V(sl(2), {mω1, . . . ,mω1}, 2m − 1) is a critical level bundle whose critical level partner bundle
V(sl(2m), {ωm, . . . , ωm}, r) has rank one by [Hob15]. We get

(8) ck(V(sl(2), {mω1, . . . ,mω1}, 2m − 1))

= c1(V(sl(2), {mω1, . . . ,mω1}, 2m − 1))k = c1(V(sl(2m), {ωm, . . . , ωm}, 1))k

= mkc1(V(sl(2), {ω1, . . . , ω1}, 1))k.

This example can be generalized to critical level type A bundles for which the weight content is maximal
(cf [Hob15] for a definition), showing their k-th Chern classes are also k-th power of their first Chern classes.

5. Criteria for extremality

5.1. Extremality from the critical level.

Definition 5.1. Let∪1≤ j≤k+3 J j = N be a partion of N = {1, . . . ,n} into k+3 nonempty sets J j. Let Z~J be the

image in M0,n of the clutching map M0,k+3 � Z~J ↪→M0,n defined by sending a point X = (C, p1, . . . , pk+3) ∈

M0,k+3 to a point in M0,n, given by attaching k + 3-points (P1, J j ∪ {q j}) to X by identifying p j with q j.

Proposition 5.2. Suppose r ≥ 1 and ` ≥ 1 and let ~λ = (λ1, . . . , λn) be an n-tuple in P`(sl(r + 1)).
Let J1, . . . , Jk+3 be any partition of N into k + 3 non-empty sets. Without loss of generality assume that
λ(Ji) =

∑
a∈Ji
|λi| are ordered, i.e. λ(J1) ≤ · · · ≤ λ(Jk+3). If

∑k+2
i=1 λ(Ji) ≤ ` + r, then ck(V(sl(r + 1), ~λ, `)

(possibly trivial) contracts the k-dimensional F-cycle Z~J. In particular, ck(V(sl(r + 1), ~λ, `)) is extremal in

Nefk(M0,n).

To prove Proposition 5.2 we use the factorization theorem in [TUY89] and vanishing above the
critical level. We now recall the factorization theorem from [TUY89] for the convenience of the
reader.

Theorem 5.3 (Factorization). [TUY89] Let (C0; p1, . . . , pn) be a stable n-pointed curve of genus 0 where
C0 has a node x0. Let ν : C1 t C2 → C0 the normalization of C0 at x0 and ν−1(x0) = {x1, x2}, with xi ∈ Ci,
then the fiberV(g, ~λ, `)|(C0;~p) is isomorphic to⊕

µ∈P`(g)

V(g, λ(C1) ∪ {µ}, `)|(C1;{pi∈C1}∪{x1}) ⊗V(g, λ(C2) ∪ {µ∗}, `)|(C2;{pi∈C2}∪{x2}),

where λ(Ci) = {λ j|p j ∈ Ci}.

Proof. (of Proposition 5.2) The k-dimensional F-cycle Z~J lies in a boundary component of M0,n that

is isomorphic to the k-cycle in M0,|J1∪···∪Jk+2|+1×{pt} under the attaching map described in Definition
5.1. To show ck(V(sl(r+1), ~λ, `)) contracts Z~J we can use Factorization to examineV(sl(r+1), ~λ, `) at
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points that lie in the boundary component. By factorization, at points in M0,|J1∪···∪Jk+2|+1 ×M0,|Jk+3|+1,
the conformal block bundle decomposes as a direct sum, where each factor is of the form

V(sl(r + 1), {λi}i∈J ∪ µ, `) ⊗V(sl(r + 1), {λi}i∈Jk+3 ∪ µ
∗, `),

such that µ ∈ P`(sl(r + 1)) and J = J1 ∪ · · · ∪ Jk+2. We note that |µ| is bounded by r · `. Hence∑
i∈J |λi| + |µ| ≤ ` + r + r · ` < (` + 1)(r + 1). This implies that ` is above the critical level for
V(sl(r + 1), {λi}i∈J ∪ µ, `). In [BGM14a], it was shown that in case ` is above the critical level, then
the bundle itself is trivial. In particular, all Chern classes will be trivial. It follows that the k-th
Chern class ofV(sl(r + 1), ~λ, `) pulled back to M0,|J1∪···∪Jk+2|+1 × pt is trivial.

�

Example 5.4. On M0,2m, the bundle V(sl(2), ω2m
1 ,m − 1) has critical level partner V(sl(m), ω2m

1 , 1), a
bundle of rank one. By Section 4,

ck(V(sl(2), ω2m
1 ,m − 1) = c1(V(sl(2), ω2m

1 ,m − 1)k.

Let Ji = {i} for 1 ≤ i ≤ k+2 and Jk+3 = {1, . . . , 2m}\∪k+2
i=1 Ji. The sets~J = (J1, . . . , Jk+3) define a k-dimensional

F-cycle under the attaching map M0,k+3 →M0,2m.
By Prop 5.2, to show the pull back ofV(sl(2), ω2m

1 ,m − 1) under the ataching map is trivial, it is enough
to guarantee the critical level of the bundleV(sl(2), ωk+2

1 , µ; m− 1) on M0,k+3 is less than m− 1. This is true
for example when k + 2 ≤ m. More generally, if k + 2 ≤ m, then ck(V(sl(2), ω2m

1 ,m − 1) are all extremal in
Nefk(M0,2m).

5.2. Extremality from the theta level. The theta level (Def 5.5), comes from the interpretation of a
vector space of conformal blocks as an explicit quotient [Bea96, Proposition 4.1] see also [FSV90]),
and holds in all types. It was also shown in [BGM14a], that conformal blocks divisors above the
theta level are trivial.

Definition 5.5. [BGM14a] Given a pair (g, ~λ), one refers to

θ(g, ~λ) = −1 +
1
2

n∑
i=1

λi(Hθ) ∈
1
2
Z

as the theta level. Here Hθ is the co-root corresponding to the highest root θ.

Proposition 5.6. [BGM14a] Let ~λ ∈ P`(g)n. Let J1, . . . , Jk+3 be any partition of N into k + 3 non-empty
sets. Without loss of generality assume that λ(Ji) =

∑
a∈Ji
|λi| are ordered, i.e. λ(J1) ≤ · · · ≤ λ(Jk+3). If∑k+2

i=1 λ(Ji) ≤ `+1, then ck(V(g, ~λ, `)) contracts the k-dimensional F-cycle Z~J, and in particular, ck(V(g, ~λ, `))

is extremal in Nk(M0,n).

The proof of Proposition 5.6 is analogous to that of Proposition 5.2.

6. Full dimensional subcones of Pliant cones

6.1. Fakhruddin’s Basis and the Pliant Cone for M0,n.

Claim 6.1. There is a spanning set for Am(M0,n), given by a basis of first Chern classes of vector bundles
of conformal blocks. In particular, all classes lie in the pliant cone, and are extremal in Nefm(M0,n).
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Proof. By [Kee92], A1(M0,n) generates Am(M0,n), all m [Kee92].
There is at least one basis we may use for the Picard group of M0,n (see Section 6.2 for more

choices in the Sn invariant case). Namely, the bundles B that generate Fakhruddin’s basis for
Pic(M0,n), are

B = {V(sl(2), ~λ, 1) : rk(V(sl(2), ~λ, 1) , 0}.

In B bundles are determined by n-tuples of weights of the form ~λ = (λ1, . . . , λn), where λi ∈ {0, ω1},
0 ,

∑
i |λi| is divisible by 2 and such that at least four weights λi are different than zero. Moreover,

all have level one, and so also have rank one. We note that if n is odd, then all elements of B are
pulled back from M0,n−1 and if n is even, thenV(sl(2), {ωn

1}, 1) is the unique element of B that is not
pulled back from M0,n−1.

The divisors generating the spanning set for Am(M0,n) are all extremal: In case n is odd, then
they are all pulled back from M0,n−1 and intersect the fibral curve in the projection map in degree
zero. If n is odd, then except for E = c1(V(sl(2), ωn

1 , 1)), they are all pulled back from M0,n−1 and
so are extremal. In fact, by [AGS10], E intersects a number of F-curves in degree zero, and are
therefore extremal. �

Example 6.2. For instance:

(1) For n ≥ 7, odd, then for N = {1, . . . ,n}, we have A2(M0,N) is spanned by classes of the form
• π∗i (βi) · π∗j(β j), where for k ∈ {i, j}, πk : M0,N →M0,N\{k}, βk ∈ A1(M0,N\{k});

• π∗i (α), where πi : M0,N →M0,N\{i}, α ∈ A2(M0,N\{i}).
Using Fakhruddin’s basis of first Chern classes of sl2 divisors, this translates as:
• c1(V(sl(2), ~λ(i), 1)) · c1(V(sl(2), ~µ( j), 1));
• c1(V(sl(2), ~λ(i), 1)) · c1(V(sl(2), ~µ(i), 1)),

where ~λ(i) = (λ1, . . . , λ7) with λi = 0, and ~µ( j) = (µ1, . . . , µ7), where µ j = 0.
(2) For n ≥ 6, even, then there is a divisor E ∈ A1(M0,N), such that A2(M0,N) is spanned by

• E2, E · π∗j(β j), π∗i (βi) · π∗j(β j), where k ∈ {i, j}, πk : M0,N →M0,N\{k}, βk ∈ A1(M0,N\{k});

• π∗i (α), where πi : M0,N →M0,N\{i}, α ∈ A2(M0,N\{i}).
Using Fakhruddin’s basis, this translates as E = c1(V(sl(2), ωn

1 , 1)), and we have
(a) c1(V(sl(2), ωn

1 , 1))2, c1(V(sl(2), ωn
1 , 1)) · c1(V(sl(2), ~λ(i), 1)),

and c1(V(sl(2), ~λ(i), 1)) · c1(V(sl(2), ~µ( j), 1));
(b) c1(V(sl(2), ~λ(i), 1)) · c1(V(sl(2), ~µ(i), 1)).

where ~λ(i) = (λ1, . . . , λ8) with λi = 0, and ~µ( j) = (µ1, . . . , µ8), where µ j = 0.

Remark 6.3. Swinarski showed that Fakhruddin’s basis does not cover the whole nef cone of M0,6, and so it
isn’t likely that these could be used to show that the cones spanned by conformal blocks classes and nef cones
are the same for k > 1. However, there are other natural basis given by conformal blocks divisors, such as
the set of bundles studied in [AGSS11], which is known to form a basis for Pic(M0,n)Sn for n ≤ 2000, and
that studied in [AGS10] which is known to form a basis for Pic(M0,n)Sn for all n. These are (each) known
to span the whole Sn-invariant cone of nef divisors, for n ≤ 8. These are discussed in Section 6.2.

To give some idea for how many more classes one gets than strictly necessary (reflecting identities), we
computed the dimension of the vector space of cycles Ak(M0,n).
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Claim 6.4. For 0 ≤ k ≤ bn−3
2 c, the dimension of the vector space of cycles Ak(M0,n) and An−3−k(M0,n) is

1 +

k−1∑
j=1

j
(
n − 1

j

)
+ k

n−3−k∑
j=k

(
n − 1

j

)
+

n−4∑
j=n−2−k

(n − 3 − j)
(
n − 1

j

)
.

Example 6.5. (1) If k = 0, the second and third sums are zero (or empty), so the number is 1;
(2) If k = 1, we get the familiar expression for the Picard number:

n−4∑
i=0

(
n − 1

i

)
=

n−1∑
i=0

(
n − 1

i

)
−

(
n − 1
n − 3

)
−

(
n − 1
n − 2

)
−

(
n − 1
n − 1

)
= 2n−1

−

(
n
2

)
− 1.

(3) If k = 2, the expression looks like:

1 +

(
n − 1

1

)
+ 2

n−5∑
j=2

(
n − 1

j

)
+

(
n − 1

3

)
.

Note that using Pascale’s identity, we can write this in the following way:
• 1 +

(n
2
)

+
(n

3
)

+ 2
∑m

i=2
(n
2i
)
, if n − 5 = 2m; and

• 1 +
(n

2
)

+
(n

3
)

+ 2
∑m

i=2
(n
2i
)

+ 2
( n−1
2m+1

)
, if n − 5 = 2m + 1.

For example:
• dim(A2(M0,6)) = 1 +

(6
2
)

= 16;
• dim(A2(M0,7)) = 1 +

(7
2
)

+
(7
3
)

= 57,
• dim(A2(M0,8)) = 1 +

(8
2
)

+
(8
3
)

+ 2
(7
3
)

= 155; and
• dim(A2(M0,9)) = 1 +

(9
2
)

+
(9
3
)

+ 2
(9
4
)

= 373.

Proof. (of Claim 6.4) This follows from Kapranov’s construction of M0,n as a series of blowups of
Pn−3 along linear subspaces spanned by linear combinations of subsets of (n− 1)-points in general
linear position. One can then use the blowup formula for Poincare Polynomials. Namely, set
X1 = BlZ0(Pn−3), and Xi+1 = BlZi(Xi), where Zi is the set of linear subspaces of dimension i spanned
by all subsets of

(n−1
i+1

)
points. then hXi+1 = hXi +

(n−1
i+1

)
(1 + t1 + t2 + · · ·+ ti)(t1 + t2 + · · ·+ tn−4−i). Adding

everything together gives the assertion. �

6.2. The Sn-invariant case. One may use a basis for Pic(M0,n)Sn to generate a full-dimensional subcone
of the Sn-invariant Pliant cone Pl(M0,n)Sn . Two such basis are given by the following sets: If n = 2(g + 1)
is even, then by [AGS10]

B1 = {V(sl(2), ωn
1 , `) : 1 ≤ ` ≤ g},

and if n = 2(g + 1) + 1 is odd,

B1 = {V(sl(2), {ωn−1
1 , 0}, `) : 1 ≤ ` ≤ g}

is a basis for Pic(M
Sn
0,n). And at least for n ≤ 2, 000, by [AGSS11] and a computer check,

B2 = {V(sl(n), {ωn
i }, 1) : 2 ≤ i ≤ b

n
2
c}.

is a basis for Pic(M0,n)Sn . The second basis B2 may be more interesting, as was shown in [AGSS11] all of
its elements span extremal rays of the nef cone Nef1(M0,n)Sn . All elements of B2 are of level one, and hence
rank one, and so the only nontrivial classes will be products of first Chern classes. In contrast, only the first
Chern classes of bundles with ` ∈ {1, 2, g − 1, g} span extremal rays of the nef cone. In particular, starting
at n = 12, the B2 gives more extremal rays of the nef cone than does B1. Elements of B1 generally have rank
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greater than one, so products of first Chern classes will sometimes be equivalent to higher Chern classes: For
instance, by the Critical Level Identity,

c1(V(sl(2), {ω2(g+1)
1 }, g))k = ck(V(sl(2), {ω2(g+1)

1 }, g)).

We give a few explicit examples below.

n [B2,B3] V rank V rank

6 [2, 1] α1 = V(sl2, {ω6
1}, 1) 1 α1 = V(sl6, {ω3}, 1) 1

6 [1, 3] α2 = V(sl2, {ω6
1}, 2) 2 α2 = V(sl6, {ω6

2}, 1) 1
7 [1, 1] β1 = V(sl2, {ω6

1, 0}, 1) 1 β1 = V(sl7, {ω7
3}, 1) 1

7 [1, 3] β2 = V(sl2, {ω6
1, 0}, 2) 4 β2 = V(sl7, {ω7

2}, 1) 1
8 [3, 2, 4] γ1 = V(sl2, {ω8

1}, 1) 1 γ1 = V(sl8, {ω8
4}, 1) 1

8 [6, 11, 8] γ2 = V(sl2, {ω8
1}, 2) 8 γ2 = V(sl8, {ω8

3}, 1) 1
8 [1, 3, 6] γ3 = V(sl2, {ω8

1}, 3) 13 γ3 = V(sl8, {ω8
2}, 1) 1

A spanning set for A2(M
S7

0,7) is given by products of extremal rays of the cone of S7-invariant nef divisors:

(π∗7α1)2 = β2
1, (π∗7α1) · (π∗7α2) = β1 · β2, and (π∗7α2)2 = β2

2.

Moreover: c1(V(sl2, {ω6
1, 0}, 2))2 = c2(V(sl2, {ω6

1, 0}, 2)), by the Critical Level identity. A spanning set for

A2(M
S8

0,8) of elements in the Pliant cone Pl(M
S8

0,8) is given by γ2
1, γ2

2, γ2
3, γ1 · γ2, γ1 · γ3, and γ2 · γ3. Again

by the Critical Level identity, c1(V(sl2, {ω8
1}, 2))2 = c2(V(sl2, {ω8

1}, 2)). However, unlike with the previous
case, these classes γi ·γ j aren’t products of pullbacks of extremal rays of the cone of S7-invariant nef divisors.
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