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Abstract

The moduli space of stable n-pointed curves of genus g has played an important role
in the literature: as a means of learning about smooth curves and their degenerations,
as a model for moduli spaces generally, and as a test variety for developing theories in
algebraic geometry. Conformal blocks are invariants of a curve attached to a Lie group. In
particular, vector spaces of conformal blocks for G at any stable curve C can be identified
with global sections of an ample line bundle on the moduli stack of G-bundles on C. These
vector spaces fit together to form vector bundles, and we can use these bundles as a tool
to study the moduli space of curves

These are notes from my lectures at GAeL about aspects of vector bundles of conformal
blocks and the moduli space of curves. During the first lecture I introduce the moduli space
of curves and illustrate my own interest in these bundles on the moduli space through a
specific problem. In the second lecture I give one definition of the bundles, using affine
Lie algebras mentioning the important Factorization and Propagation of Vacua theorems.
In lecture 3 I focus on geometric interpretations of the bundles, and in Lecture 4 about
Chern classes of the bundles.

In these notes I’ve tried to include more detail than I had time for in my talks, although
I’m sorry that I have left a lot out.
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Lecture 1

VBs of CBs and Mg,n

1.1 Introduction

In these four lectures I am going to be talking about vector bundles of conformal blocks
on moduli spaces of curves. I’ll mention a number of open questions here, and there are
more problems I could talk about if there was more time. Please contact me and keep in
touch if you become interested.

The goals of my lecture today are to:

1. Introduce the moduli space of curves Mg,n; and

2. Motivate how vector bundles of conformal blocks (VBs of CBs) on Mg,n have the
potential to help us better understand Mg,n.

In these notes I have tried to put in more detail and references than I gave in my lectures.

The moduli space of curves remains a fundamental object of study in algebraic geom-
etry for a number of reasons. For instance it is a:

• useful tool for studying smooth curves and their degenerations;

• prototype for what one wants to achieve when constructing a moduli space;

• good test space, having accessible structure:

– It has a stratification by the topological type of curve being parametrized;

– Sn acts on Mg,n by permuting the marked points, giving Mg,n combinatorial
structure similar to a homogeneous variety.
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As I’ll illustrate with an example about cones of nef divisors, this last feature often
enables one to reduce problems for moduli of higher genus curves to M0,n.

Conformal blocks are invariants of a curve C attached to a Lie group G. In particular,
vector spaces of conformal blocks for G at any stable curve C can be identified with
global sections of an ample line bundle on the moduli stack of G-bundles on C.
For instance, if G “ SLprq and C is a smooth curve, these are global sections of the
theta divisor on the moduli space of (semistable) vector bundles on C of rank r with
trivializable determinant.

Ultimately, both the subjects of moduli of curves and conformal blocks are aimed
at understanding aspects of curves through the study of moduli on them. Because
they play such a central role, it is natural to begin the lectures with a primer on the
moduli space of curves. In these notes I will also say more about moduli spaces
more generally. For further reading, see [Kol96, Chapter 1], [EH00, Chapter VI, page
], Kleiman’s article on the Picard Scheme in [FGI`05], and [HM98].

1.2 Moduli spaces in general

1.2.1 Moduli problems

Moduli spaces are solutions to moduli problems. To describe a moduli problem, we
will start with any reasonable class of objects S which we may wish to study; For
example:

– all smooth and proper curves of a fixed genus g defined over a field k;

– all curves, defined over k, of a fixed genus g ě 1 with one non-separating node;

– given a smooth curve C, all vector bundles of rank r on C, up to isomorphism.

As part of being a reasonable collection of objects, S should be closed under base
extension. So for example, if objects X in S are defined over Specpkq, where k is a
field, and if k ãÑ k is a field extension, then Xk “ XˆSpecpkq Specpkq is also in S.

Definition 1.2.1. Given a reasonable collection of objects S as above, we define a (con-
travariant) moduli functor from the category pSchkq of schemes over k to the category pSetsq
of sets

FS : pSchkq Ñ pSetsq, T ÞÑ FSpTq,

where FSpTq is equal to the set of flat families of objects in S parametrized by T up to
isomorphism over T.
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One then asks:

Question 1.2.2. Is there a flat morphism of schemes:

u :US Ñ ModS,

which is a fine moduli space for the moduli functor?

If the answer to Question 1.2.2 is yes, then for every object T P ObjpSchkq, pulling
back, gives an equivalence of sets:

FSpTq “MorSchpT,ModSq.

For example, taking T “ ModS, we obtain the universal family

u :US Ñ ModS

which corresponds to the identity element

id PMorSchpModS,ModSq.

And taking T “ Specpkq, we see that the set of k-points of ModS corresponds to the
fibers of the family u :US Ñ ModS.

Another more formal way to say this is the following.

Definition 1.2.3. The functor FS from Definition 1.2.1 is represented by the scheme ModS
if there is a natural isomorphism between FS and the functor of pointsMorSchp ,ModSq.
In this case we say ModS is a fine moduli space for the functor FS.

1.2.2 The functor of points

Definition 1.2.4. Let X be a scheme over a field k. The functor of points of a scheme X is
the contravariant functor

hX : pSchkq Ñ pSetsq,

from the category pSchkq of schemes over k to the category pSetsq of sets which takes a scheme
Y P ObpSchkq to the set hXpYq “MorSchkpY,Xq, and takes maps of schemes f : Y Ñ Z, to
maps of sets:

hXp f q : hXpZq Ñ hXpYq, rg : Z Ñ Xs ÞÑ rg ˝ f : Y Ñ Xs.
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Definition 1.2.5. We say that a contravariant functor

F : pSchkq Ñ pSetsq,

is representable if it is of the form hX for some scheme X. By Yoneda’s Lemma (below), if X
exists, then it is unique, and we say that X represents the functor F.

For a proof of Yoneda’s Lemma, which we next state, see for example [EH00, pages
252-253]

Lemma 1.2.6 (Yoneda). Let C be a category and X, and let X1 P ObjpCq.

1. If F is any contravariant functor from C to the category of sets, the natural trans-
formations from Morp,Xq to F are in natural correspondence with the elements of
FpXq;

2. If functorsMorp,Xq andMorp,X1q are isomorphic, then X – X1.

1.2.3 Mg: Not a fine moduli space

Consider, for g “ dim H1
pC,Oq ě 2:

Mg : pSchkq Ñ pSetsq, T ÞÑMgpTq,

where MgpTq is the set of proper flat maps π : F Ñ T such that every fiber Ft is
a smooth projective curve of genus g modulo isomorphism over T. This functor is
not represented by a fine moduli space: every curve with nontrivial automorphisms
creates issues.

Example 1.2.7. We will consider a nontrivial family of hyperelliptic curves parametrized
by Gm “ A1zt0u. To describe this family, let X “ Zpy2 ´ f pxqq be any smooth hyperelliptic
curve of genus g with AutpXq – C2 “ă τ ą. The cyclic group C2 acts on X and on Gm:

C2ˆX Ñ X, pτ, px, yqq ÞÑ px,´yq, and C2ˆGm Ñ Gm, pτ, zq ÞÑ ´z;

and we can form the contracted product

F “ Gm ˆC2 X “ pGm ˆ Xq{ „, where pτ ¨ α, pq „ pα, τ ¨ pq.

We’ll set
π : F Ñ Gm rpα, pqs ÞÑ α2,
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which is well defined since by this prescription pτ ¨α, pq “ p´α, pq ÞÑ α2, and pα, τ ¨pq ÞÑ α2.
To see that fibers of π are isomorphic to X, notice that one can view the set of points lying
over α2 P Gm as all points lying on two copies of X that are identified by the equivalence
relation „. In particular if the functorMg were represented by a fine moduli space Mg with
a universal family u : Ug Ñ Mg, then there would be a constant map

µπ : Gm Ñ Mg, α ÞÑ rXs,

and so F would be equal to the constant family, giving a commutative diagram

F
F //

π
##

Gm ˆ X
p1

��
Gm.

But the map F : F Ñ Gm ˆ X could simply not be well defined, for all points rpα, pqs P F ,
and so this is impossible.

There is a scheme Mg with the following properties:

1. for an algebraically closed field k, the k-points of Mg are in one to one corre-
spondence with the set of isomorphism classes of smooth curves of genus g
defined over k;

2. if π : F Ñ T is a flat family of curves of genus g, then there is a map µπ : T Ñ
Mg such that if t P T is a geometric point, then µπptq is the point rFts in Mg

corresponding to the isomorphism class of the fiber Ft “ π´1ptq.

1.2.4 Coarse moduli spaces and Mg

Definition 1.2.8. We say that a scheme ModS is a coarse moduli space for the functor
FS (from Definition 1.2.1), if

1. there is a natural transformation of functors FS ÑMorSchp ,ModSq;

2. the scheme ModS is universal for p1q;

3. for any algebraically closed field extension k ãÑ K,

FSpKq –MorSchpSpecpKq,ModSq “ ModSpKq,

is an isomorphism of sets.
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Definition 1.2.9. A stable curve is a complete connected curve with only nodes as singu-
larities and only finitely many automorphisms.

Remark 1.2.10. In order for a curve to have a finite number of automorphisms, any rational
component must meet any other component of the curve in at least three points.

Definition 1.2.11. For g “ dim H1
pC,OCq ě 2, consider the contravariant functor:

Mg : pSchkq Ñ pSetsq, T ÞÑMgpTq,

whereMgpTq is the set of flat proper morphisms π : F Ñ T such that every fiber Ft is a
stable curve of genus g modulo isomorphism over T.

Theorem 1.2.12. [DM69]There exists a coarse moduli space Mg for the moduli functorMg;
Moreover, Mg is a projective variety that contains Mg as a dense open subset.

Remark 1.2.13. Let T be any smooth curve and p P T a (geometric) point on T. Suppose
there is a regular map

µ˚ : T˚ “ T ztpu Ñ Mg.

By definition of coarse moduli space, this map corresponds to a family π : X Ñ T˚ of stable
curves of genus g, parametrized by T˚. Now by Theorem 1.2.12, the moduli space Mg is
proper, and so by the valuative criterion for properness, there is an extension of µ˚ giving a
morphism µ : T Ñ Mg. But by Theorem 1.2.12, Mg is also separated, and one can use this
to show this extension µ is unique. So this says that there is a unique extension to a family
π : X Ñ T parametrized by T. This is the content of the stable reduction theorem.

1.2.5 The boundary of Mg

The boundary of Mg is a union of components:

MgzMg “ Y
t

g
2 u

i“0 ∆i,

– ∆0 is the closure of the locus of curves with a single non-separating node, and

– for i ą 0, ∆i is the closure of the locus of curves with a single separating node
whose normalization consists of a curve of genus i and a curve of genus g´ i.
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Figure 1.1: Components of the boundary of Mg

1.3 Mg,n

As one can see in the images pictured in Figure 1.1, moduli of pointed curves come
up naturally even if one is only interested in studying Mg: Each component of the
boundary is the image of a morphism from a variety (or product of varieties) that
(coarsely) represent a more general moduli functor

Mg´1,2 � ∆0, and for 1 ď i ď t
g
2

u, Mi,1 ˆMg´i,1 � ∆i.

Definition 1.3.1. A stable n-pointed curve is a complete connected curve C that has only
nodes as singularities, together with an ordered collection p1, p2, . . ., pn P C of distinct
smooth points of C, such that the pn ` 1q-tuple pC; p1, . . . , pnq has only a finite number of
automorphisms.

Definition 1.3.2. For g “ 0, let n ě 3, and for g “ 1, let n ě 1:

Mg,n : pSchkq Ñ pSetsq, T ÞÑMg,npTq,

whereMg,npTq is the set of proper families pπ : X Ñ T; tσi : T Ñ Xun
i“1q such that the fiber

pXt, tσiptqun
i“1q, at every geometric point t P T is a stable n-pointed curve of genus g modulo

isomorphism over T.

Theorem 1.3.3. [KM76, Knu83a, Knu83b] There exists a coarse moduli space Mg,n for the
moduli functor Mg,n; it is a projective variety that contains Mg,n as a dense open subset.
Moreover, M0,n is a smooth projective variety that is a fine moduli space forM0,n.

Remark 1.3.4. When g “ 0, the moduli spaces M0,n represent the functorsM0,n, and more-
over they are smooth projective rational varieties. Kapranov showed how to construct M0,n

as both a Chow and Hilbert quotient using Veronese curves in [Kap93b], and alternatively
as a Chow quotient using the Grassmannian Gp2,nq in [Kap93a].
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1.3.1 Tautological maps

Theorem 1.3.5. (Nodal Reduction) Let T be a smooth curve, p a point of T and T˚ “ T ztpu.
Let X Ñ T˚ be a flat family of nodal curves of genus g, ψ : X Ñ Z any morphism to a
projective scheme Z, and D Ă X any divisor finite over T˚. Then there exists a branched
cover T1 Ñ T and a family X1 Ñ T1 of nodal curves, extending the fiber product XˆT˚ T1

with the following properties:

1. The total space X1 is smooth;

2. The morphism πX ˝ ψ : XˆT˚ T1 Ñ Z extends to a regular morphism on all of X1;

3. The closure of π´1
X pDq in X1 is a disjoint union of sections of X1 Ñ T1.

Any two such extensions are dominated by a third and so have special fibers whose stable
models are isomorphic.

The moduli spaces Mg,n are related to each other through tautological clutching and
attaching morphisms. For example, there are

1. projection maps:
πi : Mg,n ÝÑ Mg,n´1,

given by dropping the i-th marked point (and stabilizing, if necessary).

2. attaching maps:
Mg1,n1`1 ˆMg2,n2`1 ÝÑ Mg1`g2,n1`n2 ,

given by glueing pointed curves together;

3. clutching maps:
c : Mg´k,n`2k ÝÑ Mg,n,

given by attaching marked points in pairs.

and combinations of these. It can be beneficial to think of the moduli spaces as a
unified system, and ultimately many questions even about Mg or as we’ll see, about
bundles of conformal blocks on Mg, can be reduced to analogous questions on M0,n,
for suitable n.

1.3.2 F-Curves on Mg,n

The moduli space Mg,n, has dimension 3g´ 3` n and the set of curves with at least
k-nodes has codimension k. So for example,
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1. ∆1pMg,nq “ the set of curves having at least one node. ∆1 has codimension one.
This is the boundary Mg,nzMg,n, and it is a union of irreducible components
∆g,I.

2. ∆1pMg,nq “ the set of curves having 3g ´ 4 ` n nodes. ∆1 is 1-dimensional,
composed of a union of curves whose numerical equivalence classes we call
F-curves.

One can represent the F-curves as images of maps from M0,4 and M1,1. Notice that on

M0,n the only F-curves one has are images of maps fromM0,4. We can ”keep track”
of them by the partition N “ N1 YN2 YN3 YN4 that defines them.

1.4 Cones of cycles on a projective variety

Let X be a projective, not necessarily smooth variety defined over an algebraically
closed field. Good references for the concepts below are Laz1,Laz2.

Definition 1.4.1. A variety X is called Q-factorial if every Weil divisor on X is Q-Cartier.
We assume today that X is aQ-factorial normal, projective variety over the complex numbers.
The moduli spaces Mg,n have these properties.

Definition 1.4.2. Two divisors D1 and D2 are numerically equivalent, written D1 ” D2,
if they intersect all irreducible curves in the same degree. We say two curves C1 and C2 are
numerically equivalent, written C1 ” C2 if C1 ¨D “ C2 ¨D for every irreducible subvariety
D of codimension one in X.

Definition 1.4.3. We set N1pXqZ equal to the vector space of curves up to numerical
equivalence, and N1pXqZ equal to the vector space of divisors up to numerical equivalence,
and set

N1
pXqQ “ N1

pXqZ bZ Q, N1
pXq “ N1

pXqR “ N1
pXqZ bZ R,

and
N1pXqQ “ N1pXqZ bZ Q, N1pXq “ N1pXqR “ N1pXqZ bZ R.

The nef and pseudo-effective cones on X are subcones of vector spaces Nk
pXq, and

NkpXq, which can be define analogously, and which can be defined for arbitrary
proper varieties. This perspective involves thinking about cycles as being naturally
dual to Chern classes of vector bundles.
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Definition 1.4.4. The pseudo effective cone EffkpXq Ă NkpMg,nq is defined to be the closure

of the cone generated by k-cycles with nonnegative coefficients. Similarly Eff
k
pXq Ă Nk

pXq
is defined to be the closure of the cone generated by cycles of codimension k with nonnegative
coefficients.

The cones EffkpXq, and Eff
k
pXq are full dimensional, spanning the vector spaces

NkpXq, and Nk
pXq. They are pointed (containing no lines), closed, and convex.

Definition 1.4.5. The Nef Cone Nefk
pXq Ă Nk

pXq is the cone dual to EffkpXq.

As the dual of EffkpXq, the nef cone has all of the nice properties that EffkpXq does.

The nef cone can also be defined as the closure of the cone generated by semi-ample
divisors – divisors that correspond to morphisms, and

f : X Ñ Y is a regular map, then f ˚pNefpYqq Ă Nef1
pXq.

Given a projective variety Y, and a morphism f : X ÝÑ Y ãÑ PN, then for any
ample divisor A “ Op1q|Y on Y, one has the pullback divisor D “ f ˚A on X is base
point free. In fact, this divisor D is not only base point free, it has the much weaker
property that it is nef. For if C is a curve on our projective variety X, then by the
projection formula

D ¨ C “ f˚pD ¨ Cq “ A ¨ f˚C,

which is zero if the map f contracts C, and otherwise, as A is ample, it is positive.

It is not true that every nef divisor on an arbitrary proper variety X has an associated
morphism; To have such a property would be very special (a dream situation). But
as we saw above, the divisors that give rise to maps do live in the nef cone, and for
that reason the nef cone can be used a tool to understand the birational geometry of
the space.

Definition 1.4.6. For a Q-Cartier divisor D on a proper variety X, we define the stable base
locus of D to be the union (with reduced structure) of all points in X which are in the base
locus of the linear series |nmD|, for all n, where m is the smallest integer ě 1 such that mD
is Cartier.

Sufficiently high and divisible multiples of any effective divisor D on X will define
a rational map (although not necessarily a morphism) from X to a projective variety
Y. The stable base locus of D is the locus where the associated rational map will not
be defined. The pseudo-effective cone may be divided into chambers having to do
with the stable base loci ELM1, ELM2.

A simple example illustrates how even very crude information about the location of
the cone of nef divisors with respect to the effective cone tells us valuable information
about the geometry of the variety X, as we see for Mg.
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Figure 1.2: Nef1
pM3q Ă Eff

1
pM3q

with generators λ, 12λ ´ δ0, and
10λ´ δ0 ´ 2δ1.

1.4.1 An example result about nef cones for Mg

Theorem 1.4.7. Every nef divisor on Mg is big. In particular, there are no morphisms, with
connected fibers from Mg to any lower dimensional projective varieties other than a point.

Theorem 1.4.7 says that the nef cone of Mg sits properly inside of the cone of effective
divisors– and their extremal faces only touch at the origin of the Nerón Severi space.

The statement for pointed curves is a little bit more complicated, but still very simple
in the grand scheme of things:

Theorem 1.4.8. For g ě 2, any nef divisor is either big or is numerically equivalent to the
pullback of a big divisor by composition of projection morphisms. In particular, for g ě 2,
the only morphisms with connected fibers from Mg,n to lower dimensional projective varieties
are compositions of projections given by dropping points, followed by birational maps.

In all the examples we know, like in the picture, the nef cones are polyhedral, and the
extremal rays are generated by semi-ample divisors. One can therefore ask whether
these two features hold in general:

Question 1.4.9. 1. Is NefpMg,nq polyhedral?

2. Is every nef divisor on Mg,n semi-ample?
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1.5 Reduction of a problem for g ą 0 to g “ 0

In Mg,n, the locus

δk
pMg,nq “ tpC, ~pq P Mg,n : C has at least k nodes u

has codimension k. For each k, the set δkpMg,nq decomposes into irreducible compo-
nent indexed by dual graphs Γ with k edges. Moreover, the closure of the component
corresponding to Γ contains components consisting of curves whose corresponding
dual graph Γ1 contracts to Γ. This gives rise to a stratification of the space which is
both reminiscent and analogous to the combinatorial structure determined by the
torus invariant loci of a toric variety.

On a complete toric variety, every effective cycle of dimension k can be expressed as
a linear combination of torus invariant cycles of dimension k. Fulton compared the
action of the symmetric group Sn on M0,n with the action of an algebraic torus a toric
variety. Following this analogy, he asked whether a variety of dimension k could be
expressed as an effective combination of boundary cycles of that dimension. As M0,n

is rational, of dimension n´3, this is true for points and cycles of codimension n´3.
For the statement to be true for divisors, it would say that every effective divisor
would be in the cone spanned by the boundary divisors. This was proved false by
Keel [GKM02, page 4] and Vermeire, who found effective divisors not in the convex
hull of the boundary divisors. For the statement to be true for curves, it would say
that the Mori cone of curves is spanned by irreducible components of δn´4pM0,nq:
whose dual graph is distinctive: the only vertex that isn’t trivalent has valency four.
In particular this says a divisor is nef if and only if it nonnegatively intersects those
curves that can be described as images of attaching or clutching maps from M0,4.

This question could be asked for higher genus, and Faber did this independently (as
an intermezzo in his thesis), proving the statement for M3 and M4.

In honor of Faber and Fulton, the numerical equivalence classes of the irreducible
components of δ3g´4`npMg,nq are called F-Curves. One can ask the following question:

Question 1.5.1. (The F-Conjecture [GKM02]) Is every effective curve numerically equiva-
lent to an effective combination of F-Curves? Otherwise said, is a divisor is nef, if and only
if it nonnegatively intersects all the F-Curves?

In [GKM02], using the flag map (see Definition 1.5.1) we showed that in fact a
positive solution to this question for Sg-invariant nef divisors on M0,g`n would give
a positive answer for divisors on Mg,n. In particular, there is the potential that the
cone of nef divisors on M0,g`n can tell us about the cone of nef divisors on Mg,n. We
know now that the answer to this question is true on M0,n for n ď 7 KeelMcKernan,
and on Mg for g ď 24 [Gib09].
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1.5.1 The flag map

The flag map is defined as follows. Fix a point pE, qq P M1,1 and define the morphism
f : M0,g`n ÝÑ Mg,n, which takes a stable g`n-pointed rational curve pC; tq1, . . . , qguY

tp1, . . . , pnuq to a stable n-pointed curve of genus g by attaching g copies of pE, pq to C
by gluing C and E by identifying q and qi for 1 ď i ď g. In [GKM02], we showed that
an F-divisor D on Mg,n is nef if and only if f ˚D is nef. An F-divisor is, by definition,
any divisor that nonnegatively intersects all the F-curves. Moreover, by [GKM02],
every Sg-symmetric nef divisors on M0,g`n is equal to the pullback of a nef divisor
on Mg,n.

1.6 Why vector bundles of conformal blocks?

Vector bundles of covacua for affine Lie algebras give rise to elements of the cone of
nef divisors: each bundle on M0,n is globally generated, and so has base point free
first Chern class (ie. is of the form f ˚A for some morphism f : M0,n Ñ Y where Y
is a projective variety, and A is an ample line bundle on it). There are a lot of these
bundles: They generate a full dimensional sub-cone of the nef cone.

The F-Conjecture, if true, would give a positive answer to Question 1.4.9 Part (1).
Therefore, Question 1.4.9 and the F-Conjecture motivates our interest in vector bun-
dles of conformal blocks. If every nef divisor on M0,n is a conformal blocks divisor,
then the answer to Question 1.4.9 Part (2) will hold for g “ 0. If this is true and
the cone generated by conformal blocks is polyhedral, then the answer to Question
1.4.9 Part (2) is true and we have more evidence for the F-Conjecture. If If this is true
and the cone generated by conformal blocks is not polyhedral, then both the answer
posed by Question 1.4.9 Part (2) and the F-Conjecture are false.

Of course it may be that the nef cone is not generated by these bundles, and there is
something more to the story.

There are a lot of questions, and in trying to answer just a few, we’ve learned new
things about vector spaces of conformal blocks and the moduli space of curves, some
of which I hope to share this week.
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Lecture 2

VBs of CBs on Mg,n

My goals in this lecture are to:

1. Define vector bundles of covacua and conformal blocks on Mg,n; and

2. Discuss two important theorems

– Factorization; and
– Propagation of Vacua

used in the definition, and important in almost every result obtained about the
bundles, as I’ll illustrate throughout the remaining lectures.

If there is time, I’d like to say something about computing the ranks of these bundles.

Vector bundles of conformal blocks Vpg, ~λ, `q onMg,n are determined by collections
of data including:

– a simple Lie algebra g;

– a positive integer `; and

– an n-tuple ~λ “ pλ1, . . . , λnq of dominant integral weights for g at level `;

For the bundles to have nontrivial rank, the triples should satisfy a compatibility
criterion, which will be described.

In my lecture I assumed that members of the audience would look up the meaning
of these terms from representation theory if they were unfamiliar. There are many
other better references (for instance [FH91]), but for convenience, I have included
basic definitions here in these notes. After defining these terms in Section 2.1, I will
describe these bundles in Section 2.2.
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2.1 Just enough representation theory

We begin by describing the ingredients that go into the definitions of the bundles.

2.1.1 Simple Lie algebras

Throughout, we fix a field k, which will be useful to assume later is algebraically
closed, and of characteristic 0.

Definition 2.1.1. A Lie algebra is a k-vector space g together with an binary operation
called the Lie bracket

gˆ gÑ g, pA,Bq Ñ rA,Bs

which satisfies the following three conditions

1. bilinearity: rA` B,Cs “ rA,Cs ` rB,Cs and rA,B` Cs “ rA,Bs ` rA,Cs;

2. anti-symmetry: rA,As “ 0; or equivalently if charpkq ‰ 2, rA,Bs “ ´rB,As; and

3. the Jacobi identity: rA, rB,Css ´ rrA,Bs,Cs “ rB, rA,Css.

Example 2.1.2. Let V be a k-vector space of dimension n. We let glpVq be the general
linear Lie algebra, consisting of the set of linear transformations V Ñ V, and Lie bracket
given by the commutator rφ, θs “ φ ˝ θ´ θ ˝ φ.

In particular, as is conventional, we denote glpknq by gln, taking elements to be nˆn matrices
over k, and the Lie bracket to be the commutator:

rA,Bs “ AB´ BA.

Clearly this is bilinear and anti-symmetric. One may also verify that the Jacobi identity:

(2.1) rA, rB,Css ´ rrA,Bs,Cs

“
`

ApBC´ CBq ´ pBC´ CBqA
˘

´
`

pAB´ BAqC´ CpAB´ BAq
˘

“ ABC´ ACB´ BCA` CBA` ABC` BAC` CAB´ CBA

“ BAC` CAB´ ACB´ BCA “ rB, rA,Css.

Definition 2.1.3. A Lie algebra g is Abelian if rA,Bs “ 0 for every A,B P g.

Definition 2.1.4. A Lie algebra is simple if it is not Abelian, and has no nonzero proper
ideals.
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2.1.2 Dominant integral weights for g

To define dominant integral weights for gwe start with representations of g.

Definition 2.1.5. A homomorphism of Lie algebras is a linear map of vector spaces
f : g1 Ñ g2 preserving the bracket:

f p rA,Bsg1q “ r f pAq, f pBqsg2 , @ A,B P g1.

Definition 2.1.6. Let V be a vector space, and g a Lie algebra. A representation of g on
V is a Lie algebra homomorphism g Ñ glpVq. Equivalently, a representation of g on V is a
rule gˆ V Ñ V, say pA, vq ÞÑ A ¨ v such that

rA,Bs ¨ v “ A ¨ pB ¨ vq ´ B ¨ pA ¨ vq.

Remark 2.1.7. If g Ñ glpVq is a representation of g on V, we often abuse language and
simply refer to V itself as a representation (omitting the homomorphism from the notation).

Definition 2.1.8. If g is a Lie algebra, then it acts on itself via

gˆ gÑ g, pA,Bq ÞÑ A ¨ B “ rA,Bs.

This gives the homomorphism of Lie algebras

adg : gÑ glpgq, A Ñ adgpAq,

where adgpAq is the linear transformation on defined by

adgpAqpBq “ rA,Bs.

This very important representation is referred to as the adjoint representation.

Definition 2.1.9. We say that a representation of g on V is irreducible if it has no nontrivial
proper sub-representations. That is, if there is no non-trivial and proper vector subspace
W Ă V and representation gÑ glpWq, making the natural induced diagram:

gÑ glpWq Ă glpVq,

commute.

Definition 2.1.10. A linear subspace g1 Ă g2 is a Lie subalgebra if g1 is closed under the
Lie bracket of g2:

rA,Bsg2 P g1, @ A,B P g1.
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If gÑ glpWq is a sub-representation of V, then glpWq Ă glpVq is a Lie subalgebra.

Example 2.1.11. Let slpVq (resp. sln) denote the Lie subalgebra of glpVq (resp. gln) called
the special linear Lie algebra consisting of those operators on V of trace 0 (ie. those
matrices whose trace is 0).

Definition 2.1.12. A Cartan subalgebra of a Lie algebra g is an Abelian Lie subalgebra
h Ă g which is maximal with respect to the property of being Abelian.

Exercise 2.1.13. Let h Ă sln be the diagonal matricies. Show h is a Cartan subalgebra.

Definition 2.1.14. Let g be a Lie algebra and V be a representation for g. Suppose that h Ă g
is a Cartan subalgebra. We describe the weights and roots for gÑ glpVq as follows:

1. By an eigenvalue for the action of h, we will mean an element α P h˚ such that
Hpvq “ αpHq ¨ v, for some nonzero v P V, and all H P h. An eigenvalue α P h˚ of the
action of h on the representation V of g is called a weight of the representation. The
weights α P h˚ that occur in the adjoint representation are called roots. The convention
is that 0 P h˚ is not considered a root.

2. By the eigenspace Vα associated to the eigenvalue αwe mean the subspace of all vectors
v P V such that Hpvq “ αpHq ¨ v. The corresponding eigenvectors in Vα are called
weight vectors and Vα is called the weight space. The eigenspaces gα corresponding
to the roots are called root spaces.

Definition 2.1.15. We define the weights and roots for g as follows.

1. The weights for g are the weights for all representations gÑ glpVq.

2. We denote the set of all roots by R Ă h˚.

Definition 2.1.16. One can define a highest weight as follows:

– We choose a direction in h˚ which means defining a linear functional f : h˚ Ñ C. This
gives a decomposition of the set

R “ R` Y R´, where

R` “ tα P R : f pαq ą 0u, called the positive roots, and
R´ “ tα P R : f pαq ă 0u, called the negative roots.

– We say that a positive (resp., negative) root α P R is primitive or simple if it cannot be
expressed as a sum of two positive (resp. negative) roots.
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– A nonzero vector v P V which is both an eigenvector for the action of h and in the kernel
of gα for all α P R` is called a highest weight vector.

Remark 2.1.17. In Definition 2.1.24 we will describe the Killing form. After that we will be
able to define a semisimple Lie algebra over a field of characteristic zero as one whose Killing
form is nondegenerate. The following can be shown to be equivalent for a finite-dimensional
Lie algebra g over a field of characteristic 0:

1. g is semisimple;

2. g is a finite direct product of simple Lie algebras.

In particular, if g is a finite dimensional simple Lie algebra defined over a field of characteristic
0, then g is semisimple. While not necessary for our application, the next statement holds
for the broader context of semisimple Lie algebras.

Proposition 2.1.18. [FH91, 14.13] For any semisimple complex Lie algebra g,

1. every finite dimensional representation V of g has a highest weight vector;

2. an irreducible representation has a unique highest weight vector up to scalars.

Definition 2.1.19. A dominant integral weight is an element α P h˚ such that Hpvq “
αpHq¨v, for all H P h, where v P V is the highest weight vector of an irreducible representation
V of h.

Definition 2.1.20. [FH91, Section 14.2] R generates a lattice ΛR Ă h
˚, called the root

lattice, of rank equal to dimphq. The free generators for the lattice are called fundamental
dominant weights.

Remark 2.1.21. Depending on the author, weights are sometimes called integral weights;
dominant integral weights are sometimes referred to as dominant weights.

Definition 2.1.22. A character of a Lie algebra g is a linear map g Ñ k. That is, since
k “ gl1, a character of a Lie algebra g is a 1-dimensional representation of g.

Example 2.1.23. Let g “ sl2. We first set

A “

˜

a b
c ´a

¸

P g.

Then
adgpAq : sl2 ÝÑ sl2, B ÞÑ AB´ BA,
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so that in particular

adgpAq

˜

x y
z ´x

¸

“

˜

bz´ yc 2pay´ bxq
2pcx´ azq ´pbz´ ycq

¸

.

The Cartan subalgebra h is the set of diagonal matrices in g “ sl2. Consider

A “

˜

a 0
0 ´a

¸

P h,

so that

adgpAq : sl2 Ñ sl2,

˜

x y
z ´x

¸

ÞÑ 2a

˜

0 y
´z 0

¸

.

We shall see that adgpAq is a direct sum of three characters of h˚. Namely, one can decompose
sl2 as a direct sum of three one-dimensional vector spaces sl2 – V1 ‘ V2 ‘ V3, where

V1 “ t

˜

x 0
0 ´x

¸

: x P ku; V2 “ t

˜

0 y
0 0

¸

: y P ku;

and

V3 “ t

˜

0 0
z 0

¸

: z P ku.

The sub-vector spaces Vi Ă sl2 are sub-representations of the adjoint representation of h on
sl2 defined by

hˆ V1 Ñ V1, p

˜

a 0
0 ´a

¸

,

˜

x 0
0 ´x

¸

q ÞÑ

˜

0 0
0 0

¸

;

hˆ V2 Ñ V2, p

˜

a 0
0 ´a

¸

,

˜

0 y
0 0

¸

q ÞÑ 2a

˜

0 y
0 0

¸

;

hˆ V3 Ñ V3, p

˜

a 0
0 ´a

¸

,

˜

0 0
z 0

¸

q ÞÑ ´2a

˜

0 0
z 0

¸

.

The second and third characters α1 “ 2a and α2 “ ´2a, which are the nonzero representa-
tions, are the two roots on sl2. The root α1 is a simple root. In general, one has r simple roots
of slr`1.
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2.1.3 Dominant integral weights for g at level `

In order to define the level of a weight, we next define the Killing form p | q, and the
normalized Killing form p , q, which both come from an inner product ă | ą on g.

Definition 2.1.24. Let g be a Lie algebra and h a Cartan subalgebra. Recall that for A P g,
one has the adjoint representation

adgpAq : gÑ g, C ÞÑ adgpAqpCq “ rA,Cs.

In particular, a choice of basis for g gives a representation of this linear transformation adgpAq
by a square matrix of dimpgq. We define an inner product ă | ą on g by setting, for A and
B P g,

ă A | B ą“ tracepadgpAq ¨ adgpBqq.

One can then define a natural morphism from h to h˚ by setting

ψ : hÑ h˚ “ Homph, kq, A ÞÑ tB ÞÑă A | B ąu.

One can check that this is an isomorphism and that this induces an inner product on h˚:

p f |gq :“ă ψ´1
p f q | ψ´1

pgq ą“ tracepadgpψ´1
p f qq ¨ adgpψ´1

pgqqq.

This natural inner product p | q is referred to as the Killing form.

Remark 2.1.25. One can prove that there is a unique positive root θ P R` with the property
that pθ|θq ě pα|αq for any other root α P R`. This root theta is called the longest root. It
is conventional to normalize the Killing form, writing p , q, so that pθ, θq “ 2.

Definition 2.1.26. The level of any weight α is equal to the value pα, θq, where θ is the
longest root, and p , q is the normalized Killing form.

Remark 2.1.27. The level of a dominant integral weight α is an integer.

2.2 Definition of the fibers of the bundles

Let g be a simple Lie algebra, and ~λ “ pλ1, . . . , λnq be n dominant integral weights for
g at level `. To begin, we describe a fiber of Vpg, ~λ, `q on Mg,n at a point pC, ~pq P Mg,n,
such that U “ Cztp1, . . . , pnu is affine.
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This always happens for example in case C is a smooth curve of genus g with at
least one marked point (ie. when n ě 1), but can also happen if there is at least one
marked point on each component of a stable curve C with singularities.

In case U “ Cztp1, . . . , pnu is not affine, we will add a marked point on every compo-
nent together with a zero weight for every added point, and then use the Propagation
of vacua theorem to finish the construction.

So for now we assume that U “ Cztp1, . . . , pnu is affine.

We first consider a finite dimensional situation:

As explained earlier in the lecture, to each such weight λi there corresponds a unique
finite dimensional g-module Vλi .

Set V~λ “ Vλ1 b ¨ ¨ ¨ b Vλn , and define an action

gˆ V~λ Ñ V~λ, pg, v1 b ¨ ¨ ¨ vnq ÞÑ

n
ÿ

i“1

v1 b ¨ ¨ ¨ vi´1 b pg ¨ viq b vi`1 b ¨ ¨ ¨ vn.

We write rV~λsg for the space of coinvariants of V~λ: The largest quotient of V~λ on
which g acts trivially. That is, the quotient of V~λ by the subspace spanned by the
vectors X ¨v where X P g and v P V~λ.

The fibers Vpg, ~λ, `q|pC,~pq are also vector spaces of coinvariants, analogous to rV~λsg,
only they have something to do with the point pC, ~pq P Mg,n, as we next explain.

Infinite dimensional analogues:

Given a smooth n-pointed curve pC, ~pq, to construct the fiber Vpg, ~λ, `q|pC,~pq we will
use two new Lie algebras:

First Lie algebra: For each i P t1, . . . ,nu we set ĝi “ g b Cppξiqq ‘ C ¨ c, where by

Cppξiqq, we mean the field of Laurant power series over C in the variable ξi, and c is
in the center of ĝi. To define the bracket, we note that elements in ĝi are tuples pai, αcq,
with ai “

ř

j Xi jb fi j, with fi j P Cppξiqq. We define the bracket on simple tensors:

rpXb f , αcq, pYb g, βcqs “ prX,Ys b f g, cpX,Yq ¨ Resξi“0pgpξiqd f pξiqqq.

Checking ĝi is a Lie algebra done in Section 2.1, where we also outline the construction
of the infinite dimensional analogue Hλi of Vλi : It turns out that Hλi is a unique ĝi-
module, although infinite dimensional.
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Second Lie algebra:

Let U “ C ztp1, . . . , pnu. Because C is smooth, and has at least one marked point, U
is affine. By gpUqwe mean the Lie algebra gb OCpUq.

Choose a local coordinate ξi at each point pi, and denote by fpi the Laurant expansion
of any element f P OCpUq. Then for each i, we get a ring homomorphism

OCpUq Ñ Cppξiqq, f ÞÑ fpi ,

and hence for each i, we obtain a map (this is not a Lie algebra embedding)

gpUq Ñ ĝi Xb f ÞÑ pXb fpi , 0q.

Set H~λ “ Hλ1 b ¨ ¨ ¨Hλn and define the following, which we will show is an action:
(2.2)

gpUqˆH~λ Ñ H~λ pXb f ,w1b¨ ¨ ¨wnq ÞÑ

n
ÿ

i“1

w1b¨ ¨ ¨wi´1bppXb fpiq ¨wiqbwi`1b¨ ¨ ¨wn.

Claim 2.2.1. Equation 2.2 defines an action of gpUq on H~λ.

Proof. Given Xb f , and Yb g P gpUq, and a simple tensor v “ v1 b ¨ ¨ ¨ b vn P H~λ, we
want to check that

rX b f ,Y b gs ¨ v “ pX b f q ¨
`

pY b gq ¨ v
˘

´ pY b gq ¨
`

pX b f q ¨ v
˘

.
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The right hand side simplifies as follows:

(2.3) pX b f q ¨
`

pY b gq ¨ v
˘

´ pY b gq ¨
`

pX b f q ¨ v
˘

“ pX b f q ¨
´

n
ÿ

i“1

v1 b ¨ ¨ ¨ b vi´1 b pY b gpiq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

´ pY b gq ¨
´

n
ÿ

i“1

v1 b ¨ ¨ ¨ b vi´1 b pX b fpiq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

“

´

ÿ

1ďiďn
1ď jďn

v1b ¨ ¨ ¨ v j´1bpXb fp jq ¨ v jb v j`1b ¨ ¨ ¨ b vi´1bpYb gpiq ¨ vib vi`1b ¨ ¨ ¨ b vn

¯

´

´

ÿ

1ďiďn
1ď jďn

v1b ¨ ¨ ¨ v j´1b pYb gp jq ¨ v jb v j`1b ¨ ¨ ¨ b vi´1b pXb fpiq ¨ vib vi`1b ¨ ¨ ¨ b vn

¯

“

´

ÿ

1ďiďn

v1 b ¨ ¨ ¨ v j´1 b ¨ ¨ ¨ b vi´1 b pX b fpiq ¨
`

pY b gpiq ¨ vi
˘

b vi`1 b ¨ ¨ ¨ b vn

¯

´

´

ÿ

1ďiďn

v1 b ¨ ¨ ¨ v j´1 b ¨ ¨ ¨ b vi´1 b pY b gpiq ¨
`

pX b fpiq ¨ vi
˘

b vi`1 b ¨ ¨ ¨ b vn

¯

“

´

ÿ

1ďiďn

v1 b ¨ ¨ ¨ v j´1 b ¨ ¨ ¨ b vi´1 b
`

rX,Ys ` p f gqpi

˘

¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

The left hand side simplifies as follows:

(2.4)
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b

´

rX,Ys b fpi gpi ` pX,YqResξi“0 gpid fpic
¯

¨ vi b vi`1 b ¨ ¨ ¨ b vn

“
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b

´

rX,Ys b fpi gpi

¯

¨ vi b vi`1 b ¨ ¨ ¨ b vn

`
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b

´

pX,YqResξi“0 gpid fpic
¯

¨ vi b vi`1 b ¨ ¨ ¨ b vn.

Now, by definition, c ¨ vi “ ` ¨ vi for all i, and so we can rewrite the second summand
as follows

(2.5)
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b ppX,YqResξi“0 gpid fpicq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

“
ÿ

1ďiďn

pX,YqResξi“0 gpid fpi

´

v1 b ¨ ¨ ¨ b vi´1 b c ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

“
ÿ

1ďiďn

pX,YqResξi“0 gpid fpi

´

v1 b ¨ ¨ ¨ b vi´1 b ` ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

“
`

`
ÿ

1ďiďn

pX,YqResξi“0 gpid fpi

˘

´

v1 b ¨ ¨ ¨ b vn

¯

.
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Since
ř

1ďiďnpX,YqResξi“0 gpid fpi “ 0, this contribution is zero. Therefore the left and
right hand sides of the expressions are the same, and we have checked that gpUq acts
on H~λ as claimed. �

We now set
Vpg, ~λ, `q|pC,~pq “ rH~λsgpUq.

To define the fiber in case the set U is not affine: We use use a result called
“Propagation of Vacua”, described in Section 2.4.

If C is a stable curve with singularities: The “Factorization Theorem”, described
in the lecture, and in Section 2.3, gives a way to view fibers at points where curves
have singularities.

Propagation of Vacua and Factorization are fundamental results.

Propagation of vacua and Beauville’s quotient construction are both consequences
of Theorem 2.6.1. Propagation of Vacua enables one to express a bundle with a
zero weight onMg,n as the pullback of a bundle fromMg,n´1. Beauville’s quotient
construction gives an alternative expression for vector spaces of covacua in genus
zero.

The Factorization Theorem, originally proved by Tsuyshiya, Ueno and Yamada
[TUY89, Prop 2.2.6], explains how a vector bundle of conformal blocks at a point
on the moduli space where the underlying curve has a node, factors into sums and
products of bundles on the normalization of the curve where the sum is taken over
all possible weights at points over which the normalization is ”glued” to make the
original curve. Applications of Factorization include inductive formulas for the rank
and Chern classes of the bundle. In fact, Beauville, in [Bea96] gives an elementary
proof of Factorization using this quotient construction.

2.3 Factorization

Definition 2.3.1. Given a weight µ P P`pgq, let µ‹ P P`pgq be the element with the property
that ´µ‹ is the lowest weight of the weight space Vµ.

Example 2.3.2. If µ P P`psl2q, then µ‹ “ µ.

Example 2.3.3. For g “ slr`1 we express a weight λi as a sum λi “
řr

j“1 c jω j, and λi has
a corresponding Young diagram that fits into an pr ` 1q ˆ ` sized grid, where since λi is
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normalized, the last row is empty. In terms of Young diagrams, the level is the number of
“filled in” boxes across the top, and |λi|means the total number of boxes “filled in” altogether.
To find the Young diagram corresponding to λ‹ we fill in the boxes in the diagram directly
below the boxes corresponding to λ, and then rotate by 180 degrees to get the Young diagram
associated to the weight λ˚. For example, if r ` 1 “ 4, and ` ě 5 for the weight λ pictured
in white on the left below, then the dual weight λ‹ is pictured in green on the right.

Figure 2.1

λ “ 3ω1 ` ω2 ` ω3

for sl4,
and level `pλq ě 5.

λ‹ “ ω1 ` ω2 ` 3ω3.

Theorem 2.3.4 (Factorization). Let pC0; p1, . . . , pnq be a stable n-pointed curve of genus g
where C0 has a node x0.

1. If xo is a non-separating node, ν : C Ñ C0 the normalization of C0 at x0, and ν´1px0q “

tx1, x2u, then

Vpg, ~λ, `q|pC0;~pq –
à

µPP`pgq

Vpg, ~λY µY µ‹u, `qpC;~pYtx1,x2uq.

2. If x0 is a separating node, ν : C1 Y C2 Ñ C0 the normalization of C0 at x0 and
ν´1px0q “ tx1, x2u, with xi P Ci, then

(2.6) Vpg, ~λ, `q|pC0;~pq

–
à

µPP`pgq

Vpg, λpC1qY tµu, `q|pC1;tpiPC1uYtx1uqbVpg, λpC2qY tµ
‹
u, `q|pC2;tpiPC2uYtx2uq,

where λpCiq “ tλ j|p j P Ciu.

Definition 2.3.5. The weights µ and µ˚ P P`pgq that occur in Theorem 2.3.4 are called the
restriction data for Vpg, ~λ, `q at the point pC0; ~pq.

Example 2.3.6. [BGM13] We will factorize the bundleVpslr`1, tω1, ω1, p`´1qω1`ωr, `ωru, `q

onM0,4 at the two types of points pC; p1, . . . , p4q, where the curve C has one node: the first
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type X1 “ pC11YC12; p1, . . . , p4q where C11 is labeled by p1 and p2 and C12 by p3 and p4; and
the second type of curve X2 “ pC21 Y C22; p1, . . . , p4q where C21 is labeled by p1 and p3 and
C22 by p3 and p4.

1. If r` 1 “ 2 this is Vpsl2, tω1, ω1, `ω1, `ω1u, `q, and we obtain:

Vpsl2, tω1, ω1, `ω1, `ωru, `q|X1

–
à

mě0
even

Vpsl2, tω1, ω1,mω1u, `q|pC11,p1,p2,x1q b Vpsl2, t`ω1, `ωr,mω1u, `q|pC12,p3,p4,x2q.

As we’ll see later, the only term in the sum above that gives bundles of nonzero rank
occurs when m “ 0, and that both bundles have rank one.

Vpsl2, tω1, ω1, `ω1, `ωru, `q|X2

–
à

mě0
m``”1pmod 2q

Vpsl2, tω1, `ω1,mω1u, `q|pC21,p1,p3,x1qbVpsl2, tω1, `ω1,mω1u, `q|pC22,p2,p4,x2q.

Again, we’ll see that the only term above that gives two bundles of nonzero rank occurs
when m “ p` ´ 1q, and has rank one in this case.

2. If r` 1 “ 3 this is Vpsl3, tω1, ω1, p` ´ 1qω1 ` ω2, `ω1u, `q, and we obtain, for

Vpsl3, tω1, ω1, p` ´ 1qω1 ` ω2, `ω1u, `q|X1

–
à

µ“c1ω1`c2ω2
c1`2c2”1pmod 3q

Vpsl3, tω1, ω1, µu, `q|pC11,p1,p2,x1qbVpsl3, t`ω1, `ωr, µ
‹
u, `q|pC12,p3,p4,x2q.

We’ll later see that the only summand on the right hand side with nonzero rank is the
one with µ “ ω1 (so c1 “ 1, and c2 “ 0).

(2.7) Vpsl3, tω1, ω1, p` ´ 1qω1 ` ω2, `ω1u, `q|X2

–
à

µ“c1ω1`c2ω2
``c1`2c2”1pmod 3q

Vpsl3, tω1, `ω1, µu, `q|pC21,p1,p3,x1qbVpsl3, tω1, `ω2, µ
‹
u, `q|pC22,p2,p4,x2q.

We’ll later see that the only summand on the right hand side with nonzero rank is the
one with µ “ p` ´ 1qω2 (so c1 “ 0, and c2 “ p` ´ 1q).

3. In general:

Vpslr`1, tω1, ω1, p` ´ 1qω1 ` ωr, `ωru, `q|X1

–
à

µ“
řr

i“1 ciωi
řr

i“1 i¨ci`2”0pmodpr`1qq

Vpslr`1, tω1, ω1, µu, `q|pC11,p1,p2,x1qbVpslr`1, tp`´1qω1`ωr, `ωr, µ
‹, `q.
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Moreover, one can show that the only summand on the right hand side with nonzero
rank is the one with µ “ ωr´1.

Vpslr`1, tω1, ω1, p` ´ 1qω1 ` ωr, `ωru, `q|X2

–
à

I
Vpslr`1, tω1, p`´1qω1`ωr, µu, `q|pC21,p1,p3,x1qbVpslr`1, tω1, `ωr, µ

‹, `q|pC22,p2,p4,x2q,

where we sum over the set

I “ tµ “
r
ÿ

i“1

ciωi P P`pslr`1q :
r
ÿ

i“1

i ¨ ci ` ` ` r ” 0pmodpr` 1qqu.

We will eventually show that the only summand on the right hand side with nonzero
rank is the one with µ “ p` ´ 1qωr and µ‹ “ p` ´ 1qω1. We’ll see that:

rkVpslr`1, tω1, p`´1qω1`ωr, p`´1qωru, `q “ rkVpslr`1, tω1, `ωr, p`´1qω1, `q “ 1.

Remark 2.3.7. This example exhibits the potential for the use of factorization to compute
ranks, which is the idea behind the proof of the Verlinde formula. The comments made also
indicate that there is a lot of vanishing happening – which is a foreshadowing of one of the
open problems in the subject: that is to determine given g and ` necessary and sufficient
conditions which will guarantee that the first Chern class of the bundle Vpg, ~λ, `q is not zero.
One indication is that it’s rank is nonzero, which is actually enough for sl2, but this is not
in general. For example, while the rank of Vpsl4, tω1, 2ω1 ` ω3, 2ω1 ` ω3, 2ω1 ` ω3u, 3q is
one, the first Chern class of this bundle is zero [BGM15a]. We’ll discuss this problem.

2.4 Propagation of Vacua

Propagation of Vacua is a Corollary of Theorem 2.6.1, proved in Section 2.6.

Corollary 2.4.1. [Propagation of Vacua] Let q P Cz~p. There is a canonical isomorphism

Vpg, ~λ, `q|pC,~pq – Vpg, ~λY t0u, `q|pC,~pYtquq.

Proof. (of Corollary 2.4.1) Apply Theorem 2.6.1 with tq1, . . . , qtu “ tqu, and tµ1, . . . , µtu “

tµ “ 0u, using that V0 “ 0.

�
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2.5 Brief sketch of construction of the sheaf of confor-
mal blocks

Suppose that k is an algebraically closed field of characteristic 0. Given a triple
pg, ~λ, `q as above, for each i P t1, . . . ,nu, let

ĝi “
`

gb kppξiqq
˘

‘ k ¨ c,

be the affine Lie algebra with bracket

rXb f pξiq,Ybgpξiqs “ rX,Ys b f pξiqgpξiq ` pX,Yq ¨ Respgpξiqd f pξiqq ¨ c,

where X, Y P g, and c is in the center of ĝi.

As before, for each λi, there is a unique ĝi-module Hλi . Set H~λ “
Ân

i“1 Hλi , and let
T be a smooth variety over a field k, and π : C Ñ T a proper flat family of curves
whose fibers have at worst ordinary double point singularities. For 1 ď i ď n, let
pi : T Ñ C be sections of π whose images are disjoint and contained in the smooth
locus of π.

First, suppose that T “ SpecpAq for A a k-algebra, and assume for each i, there are
isomorphisms ηi : pOC,pipTq Ñ Arrξiss. Set B “ ΓpCz Yn

i“1 pipTqq. Then using the ηi,
there are maps B Ñ Appξiqq. One has that g bk B maps to ĝi bk A, for each i, and
moreover H~λbk A is a representation of gbk B via restriction and acting diagonally
(as before). Define the sections of the sheaf of coinvariants VCp

~λ, ~pq over T to be
the quotient VCp

~λ, ~pq “ H~λbk A {pg bk Bq ¨H~λbk A. If T is not affine, then to define
VCp

~λ, ~pq, one takes an open affine covering and extends by the sheaf property.

Furthermore, in this description, the open set Cz Yn
i“1 pipTq has been implicitly as-

sumed to be affine. But this premise can be removed using a descent argument: See
[Fak12, Prop 2.1], and the discussion following.

2.6 Appendix: Beauville’s quotient construction

I mentioned Beauville’s quotient construction a couple of times, and so I’ve included
this sketch. The notes here closely follow [TUY89, Prop 2.2.6], [Bea96, Prop 2.3, Cor
2.4], and [BGM13]. We first state a general result, Theorem 2.6.1, which refers to the
following, mentioned earlier in the notes, slightly differently.
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Notation

Let C be a possibly nodal curve, p1, p2, . . ., ps P C be s smooth points of C, U “

Cztp1, . . . , psu and let ξi be a local parameter of C near pi. Then for ĝpUq “ gbOCpUq,
one can show the following is an embedding of Lie algebras:

ĝpUq ãÑ

s
â

i“1

`

gb kppξiqq
˘

‘ k c “ ĝs, pXb f q ÞÑ pXb fp1pξ1q, . . . ,Xb fpnpξnq, 0q.

Given weights λ1, . . ., λs P P`pgq, we have the pg b kppξiqq ‘ k cq-modules Hλi . The
image of ĝpUq acts on H~λ “ Hλ1 b ¨ ¨ ¨ bHλs :

ĝpUqˆH~λ Ñ H~λ, ppXb f q, pw1b¨ ¨ ¨bwsqq ÞÑ

s
ÿ

i“1

w1b¨ ¨ ¨wi´1bpXb fpiq ¨wib¨ ¨ ¨bws.

Now given any weight µ P P`pgq, recall that the subspace of Hµ annihilated by ĝ`
is isomorphic as a g-module to Vµ, and so Vµ is identified with this subspace of Hµ.
Given t points q1, . . ., qt P U, and weights, µ1, µ2, . . ., µt P P`pgq one can define an
action of ĝpUq on V~µ “ Vµ1 b ¨ ¨ ¨ b Vµt by evaluation:

ĝpUqˆV~µ Ñ V~µ, ppXb f q, pv1b¨ ¨ ¨bvtqq ÞÑ

t
ÿ

j“1

v1b¨ ¨ ¨bv j´1bpXb f pq jqq ¨v jb¨ ¨ ¨bvt.

Theorem 2.6.1. With notation as above, the inclusions Vµ j ãÑ Hµ j induce an isomorphism

rH~λbV~µsĝpUq
„
Ñ rH~λbH~µsĝpUz~qq – Vpg, ~λY ~µ, `q|pC,~pY~qq.

2.6.1 The construction

Corollary 2.6.2. Let q P Cz~p. There is a canonical isomorphism

Vpg, ~λ, `q|pC,~pq – rH0bV~λsĝpCzqq.

Proof. (of Corollary 2.6.2) By Corollary 2.4.1 (to Theorem 2.6.1), and the definition of
vector spaces of covacua:

Vpg, ~λ, `q|pC,~pq “ Vpg, t0u Y ~λ, `q|pC,tquY~pq “ rH0 bH~λsgpCztquY~p.

Now also by Theorem 2.6.1,

rH0 bH~λsgpCztquY~p “ rH0 b V~λsgpCztqu.

�

We briefly outline the proof of Theorem 2.6.1 in three steps. The full proof is given
in [Bea96, pages 7-8].
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The proof of Theorem 2.6.1

Proof. (of Theorem 2.6.1) We work by induction: Put q “ qt, µ “ µt, U “ Cz~p, and
H “ H~λbVµ1 ¨ ¨ ¨ b Vµt´1 . It will be enough to show that the inclusion Vµ ãÑ Hµ

induces an isomorphism

rH b VµsgpUq
„
Ñ rH bHµsgpUzqq.

Step One.

Show that the inclusion of Vµ ãÑ Hµ is equivariant with respect to the action of gpUq
so that it induces a linear map

rH b VµsgpUq Ñ rH bHµsgpUzqq.

Step Two.

Prove the result when we replace Hµ by the Verma module Mµ:

Claim 2.6.3.
rH b VµsgpUq

„
Ñ rH bMµsgpUzqq.

Proof. (Outline) Choose a local coordinate z at q so that z´1 P OCpUzqq, and write

gpUzqq “ gb OCpUzqq “ gb
`

ÿ

ně1

k z´n
˘

“ gb OCpUq ‘
`

ÿ

ně1

gz´n
˘

“ gpUq ‘ ĝ´,

where we identify the Lie algebra
ř

ně1 gz
´n with its image ĝ´ in ĝ. So one wants to

show
rH b VµsgpUq

„
Ñ rH bMµsgpUq‘ĝ´ .

We first show that
rH bMµsĝ´ – H b V~λ .

After doing so, taking coinvariants under gwill give the result.

By definition, rH bMµsĝ´ is the same as the tensor product H bUpĝ´q Mµ. Now by
definition of Mµ,

H bUpĝ´q Mµ – H bUpĝ´q Upĝ´q bk V~λ – H bk V~λ .

�
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Step Three.

For Iµ such that Hµ “ Mµ {Iµ, one has the exact sequence:

H b Iµ Ñ rH bMµsgpUzqq Ñ rH bHµsgpUzqq Ñ 0.

Claim 2.6.4. The image ofH b Iµ in rH bMµsgpUzqq is zero.

Proof. (Outline) Using that by definition, rHbMµsgpUzqq is the same asHbUpgpUzqqqMµ,
and that as a Upĝq-module, Iµ is generated by the element

pXθ b z´1
q
`´pθ,µq`1

b vµ,

where vµ is the highest weight vector associated to µ and this vector is annihilated
by ĝ`, It is enough to show that hb ppXθ b z´1q`´pθ,µq`1 ¨ vµq “ 0 for all h P H . This is
done in [Bea96].

�
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Lecture 3

Geometric interpretations of
conformal blocks

3.1 Introduction

In the this lecture I will discuss algebro-geometric descriptions of the dual spaces
to the fibers of the bundles Vpg, ~λ, `q at points pC, ~pq P Mg,n. We’ll consider what we
know when we take our points from the interior of the moduli space, when C is
a smooth curve, as well as what we know about such interpretations when C has
singularities, an open problem since the early 1990’s.

I have selected this topic as it illustrates a theme that I would like to put forward:
We have been able to learn about vector spaces of conformal blocks by studying the
vector bundles they form on the moduli space, rather than as vector space alone.

As I’ll explain today, there are points on Mg,n for which no such geometric interpre-
tation for Vpg, ~λ, `q|˚

pC,~pq
exists, whereas there are other points at which everything

works out as it does for smooth curves. One way to approach a solution is to under-
stand finite generation of the algebra of conformal blocks, which I will introduce.
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3.2 Finite generation of the section ring of the determi-
nant bundle

For G be a simple, simply connected, complex linear algebraic group, C a stable
curve of arithmetic genus g ě 2, BunGpCq is the smooth algebraic stack whose fiber
over a scheme T is the groupoid of principal G-bundles on C ˆ T (Def 3.7.1). For
completion, principal G- Bundles are defined carefully at the end of the lecture. To
any representation G Ñ GLpVq, there corresponds a distinguished line bundle on
BunGpCq, the determinant of cohomology line bundleD “ DpVq, described next.

To defineDpVq, we use the following:

Definition 3.2.1. For any vector bundle E on a curve C, the determinant of cohomology of
E on C is the one dimensional vector space given by

(3.1) DpC,Eq “
´

Λmax H0 `C,E
˘

¯˚

b

´

Λmax H1 `C,E
˘

¯

.

Following [LS97], we define the determinant of cohomology line bundle as follows.

Definition 3.2.2. Let ρ : G Ñ GlpVq be a representation of G. If E is a family of G-
bundles on C parameterized by a scheme T, then given a point t P T, one has that Et is
a G-bundle on C, and one can form a vector bundle EtpVq on C by taking the contracted
product EtpVq “ Et ˆG V. The determinant of cohomology line bundle DEpVq is the line
bundle on T whose fiber over a point t P T is the lineDpC,EtpVqq, described in Def 3.2.1.

Theorem 3.2.3. For G “ SLprq, for the standard representation SLprq Ñ GlpVq, setting
D “ DpVq,

AC
‚ “

à

mPZě0

H0
pBunSLprqpCq,Dbm

q

is finitely generated.

Theorem 3.2.3 was proved in case of smooth curves in [BL94], and [Fal94], and for
stable curves with singularities in [BG16].

3.3 Geometric interpretations at smooth curves

To understand just what Theorem 3.2.3 has to do with conformal blocks, we consider
the following results.
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Theorem 3.3.1.
À

mPZě0
Vpslr, `mq|˚pC;~pq

–
À

mPZě0
H0
pBunGpCq,Db`mq.

Theorem 3.3.1 was proved for smooth curves in [BL94], and for C stable with singu-
larities in [BF15]. In fact, this statement can be stated in full generality as follows:

Theorem 3.3.2. Vpg, ~λ, `q|˚
pC;~pq

– H0
pParbunGpC, ~pq,LGpC, ~p, ~λqq.

The moduli stack ParbunGpC, ~pqmaps to BunGpCq and the line bundleLGpC, ~p, ~λq on
ParbunGpC, ~pq is constructed fromDpVq on BunGpCq. Theorem 3.3.2 was proved for
smooth curves by Laszlo and Sorger [LS97]. The result holds for families of singular
stable curves by [BF15]. A simple alternative proof is given for singular stable curves
in [BG16] (not families), that is inductive and uses factorization.

If C is smooth, even more is true: stated in the case we are using now

Theorem 3.3.3.
À

mPZě0
H0
pBunGpCq,Db`mq –

À

mPZě0
H0
pX,Ab`mq,

where pX,Aq “ pMCprq, θq is the projective polarized pair:

– X “ MCprq is the moduli space parametrizing semi-stable vector bundles on C
of rank r with trivializable determinant; and

– A “ θ “ tE P MCprq | E b L has a nonzero sectionu, for L a fixed line bundle on C
of rank g´ 1.

Putting Theorems 3.2.3, 3.3.1, and 3.3.3 together, we say that for a point rCs P Mg,
corresponding to a smooth curve C, there is a projective polarized pair pMCprq, θq such that

à

mPZě0

Vpslr, `mq|˚rCs – H0
pMCprq, θ`mq,

and so
Projp

à

mPZě0

Vpslr, `mq|˚rCsq – MCprq.

In other words, there are geometric interpretations for conformal blocks at smooth curves.
The same is true for conformal blocks at smooth pointed curves.

Example 3.3.4. For rCs P M2, one has, that

Vpsl2, 1q|˚C – H0
pBunSLp2qpCq,DpVqq – H0

pMCp2q, θq – H0
pP3,Op1qq,
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where the third isomorphism was proved in a 1960’s Annals paper by Narasimhan and
Ramanan. More generally, we write

à

m
Vpsl2,mq|˚C –

à

m
H0
pP3,Opmqq.

3.4 Geometric interpretations at stable curves

We consider whether such geometric interpretations for Vpg, ~λ, `q exist at points pC; ~pq P
Mg,n, where C has singularities. We state this problem in the simplest case:

Question 3.4.1. Given a point rCs P Mg, corresponding to a curve C with singularities, is
there is a projective polarized pair pX,Aq such that

à

mPZě0

Vpslr, `mq|˚rCs – H0
pX,Abm

q,

and so
Projp

à

mPZě0

Vpslr, `mq|˚rCsq – X?

We showed in [BGK16] that for this question, and the analogous more general question for
conformal blocks on pointed curves, while sometimes yes, the answer is no, not necessarily!

3.4.1 Negative results

Example 3.4.2. [BGK16] Let C be a stable curve of genus 2 with a separating node. There
is no polarized pair pX,Aq such that

à

mPZ
Vpsl2,mq|˚rCs –

à

mPZ
H0
pX,Am

q.

To show this we prove that if V “ Vpsl2, 1q has geometric interpretations at such a curve C,
then

(3.2) c1pVpsl2,mqq “
ˆ

m` 3
4

˙

c1pVpsl2, 1qq

which one can show fails by intersecting with F-curves. There are two types of F-curves on
M2. The first is the image of a clutching map from M0,4 for which points are identified in
pairs. The second is the image of a map from M1,1 given by attaching a point pE, pq P M1,1,
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gluing the curves at the marked points. One obtains a contradiction when we intersect with
either type of F-curve, even just at m “ 2.

I’ll talk about the proof of this and more general related results in my fourth lecture.

Example 3.4.3. [BGK16] For pC, ~pq P M2,n, for n “ 2k ą 0, such that C has a single
separating node, then here is no polarized pair pX,Aq such that

à

mPZ
Vpsl2, ωn

1 ,mq|
˚

rCs –
à

mPZ
H0
pX,Am

q.

So that Vpsl2, ωn
1 , 1q does not have geometric interpretations at such points pC, ~pq P M2,n.

We do know that sometimes there are geometric interpretations. Here are two types of results
along those lines:

3.4.2 Positive result for positive genus

Theorem 3.4.4. [BG16]Given rCs PMg, and a positive integer r, there exists a projective
polarized pair pXCpr, `q,LCpr, `qq, and a positive integer ` such that

(3.3)
à

mPZě0

Vpslr,m`q|˚rCs –
à

mPZě0

H0
pXCpr, `q,LCpr, `qbm

q.

We can be more precise about ` in some cases:

1. For general r if C has only nonseparating nodes, ` ě 1;

2. For r “ 2, ` divisible by 2;

3. For general r, and C with separating nodes, we know such an ` exists.

Example 3.4.5. So by Theorem 3.4.4, the bundle Vpsl2, 1q has geometric interpretations at
a point rCs P M2 with only nonseparating nodes, even though it does not have if C has a
separating node, while Vpsl2, 2q has geometric interpretations at all points rCs P M2.

To prove Theorem 3.4.4, we use Theorems 3.2.3, and 3.3.1, together with the stratification of
Mg to prove that

A‚ “
à

mPZě0

Vpslr, `mq˚,

is finitely generated.

The sheaves of conformal blocks Vpslr, `mq˚ are locally free of finite rank. This sum forms
the so-called algebra of conformal blocks, mentioned in Falting’s work, and studied by Chris
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Manon mainly for SLp2q and SLp3q. In these cases, Manon shows the algebra is finitely
generated. Manon also takes ProjpA‚q in more general circumstances, without knowing or
checking finite generation.

For A‚ to be finitely generated, it means that the algebra is generated over A0 – OMg
by

finitely many elements t fdiu
n
i“1, with fdi P Adi “ Vpslr, diq

˚.

For d “ Πn
i“1di, we let S‚ “

À

mSm, where Sm “ Adm, be the d-th Veronese subring ofA‚.
Then S‚ is generated in degree 1 over S0, and

X :“ ProjpA‚q – ProjpS‚q
p
ÝÑ Mg

is a flat family.

Moreover, by definition, for k ąą 0,

Vpslr, kdq˚ “ Sk ÝÑ p˚OXpkq,

are isomorphisms. Since taking fibers commutes with taking Proj,

p´1
prCsq “ XC – Projp

à

m
Vpslr, `mq|˚Cq “ ProjpAC,`

‚ q,

whereAC,1
‚ “ AC

‚ .

By definition of pushforward,

Sk|rCs “ Vpslr, kdq|˚
rC “ pp|XCq˚pOXpkdq|XCq – H0

pXC,OXCpkdqq.

In other words, for ` “ kd, and k ąą 0, there is a projective polarized pair pXC,OXCp`qq

such that Vpslr, `q|˚rCs – H0pXC,OXCp`qq, and

à

mPZě0

Vpslr, `mq|˚rCs –
à

mPZě0

H0
pXC,OXCp`mqq.

So Vpslr, `q has geometric interpretations at C if ` “ kd, and k ąą 0.

Remark 3.4.6. The flat family X :“ ProjpA‚q – ProjpS‚q
p
ÝÑ Mg is one way to complete

the family X0 p
ÝÑ Mg whose fibers over points rCs are the moduli spaces MCprq described

earlier. There are other ways to complete this family and this problem is an old one with an
interesting history.
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3.4.3 Positive result for bundles of rank one

Theorem 3.4.7. [BGK16] Geometric interpretations hold at all points if Vpslr, ~λ, `q has
rank one.

More general results hold for bundles with restriction behavior that is similar to that for rank
one bundles. We avoid stating these results here because they are involved.

While I don’t know of any vector bundle of conformal blocks of rank one on Mg,n for positive
genus g, every bundle on M0,n of the form Vpslr, ~λ, 1q has rank one, and by Theorem 3.4.7,
all such bundles have geometric interpretations at all points of M0,n.

Example 3.4.8. For contrast with Example 3.4.3, Vpsl2, ω2k
1 , 1q has rank one on M0,2k, and

by Theorem 3.4.7, geometric interpretations at all points of M0,2k, whereas by [BGK16] the
same bundle on M2,2k will not have geometric interpretations at a point pC, ~pq if C has a
separating node.

Idea of proof of Theorem 3.4.7

3.5 Idea behind the proof of the negative result

In [BGK16] we prove the following:

Theorem 3.5.1. There are points pC, ~pq P Mg,n and vector bundles of conformal blocks
Vpg, ~λ, `q on Mg,n for which there is no projective polarized pair for which

(3.4)
à

mPZě0

Vpg,m~λ,m`q|˚
pC,~pq –

à

mPZ
H0
pX,Am

q

holds.

To prove Theorem 3.5.1, we give obstructions to geometric interpretations for those bundles
where geometric interpretations at smooth curves are known to be varieties of minimal degree.
I’ll explain what I mean next.

Given a projective polarized pair pX,Aq, there is a quantity called the ∆-invariant or ∆-genus,
which is defined to be

∆pX,Aq “ dimpXq ` AdimpXq
´ h0

pX,Aq.
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Fujita (1990, Chapter 1 [?]) proved that ∆pX,Aq ě 0, and if ∆pX,Aq “ 0, the section ring of
A,

À

mPZě0
H0pX,Abmq is generated by its global sections H0pX,Aq, and so A is very ample.

In this case, when A is very ample, it gives an embedding of X into projective space

X ãÑ ProjpB‚q “ PN, B‚ “
à

mPZě0

Symm
pH0

pX,Aqq.

The image of X is a non-degenerate variety of degree

Adim X
“ 1` codimpXq.

A non-degenerate variety X ãÑ PN is of minimal degree if degpXq “ 1` codimpXq.

So if pX,Aq is a projective polarized pair with ∆pX,Aq “ 0, then the image of the variety X
embedded by A is a variety of minimal degree.

Varieties of minimal degree are classified. For instance pX,Aq – pPd,Op1qq if and only if
Ad “ 1.

What is crucial to our line of reasoning is that the ∆-invariant is upper semi-continuous: If
V is a vector bundle of conformal blocks on Mg,n that has geometric interpretation at some
point pC, ~pq P Mg,n such that the corresponding projective polarized pair has ∆-invariant
zero, then if it has geometric interpretations at any other points, those corresponding pairs
will also have ∆-invariant zero.

We use this to prove the following result (paraphrased):

Theorem 3.5.2. Suppose that Vpg,m~λ,m`q has ∆-invariant zero rank scaling, and geomet-
ric interpretations exist for V at all points, then for all m, c1pVpg,m~λ,m`qq can be expressed
in terms of c1pVpg, k~λ, k`qq, for k ă m.

There is an explicit statement for Theorem 3.5.2, which is rather long and technical. In
Example 3.5.3, Theorem 3.5.2 is stated for the stronger case of projective rank scaling, where
there is an if and only if result.

Example 3.5.3. RankpVpg,m~λ,m`qq “
`m`d

d

˘

, and geometric interpretations exist for
Vpg, ~λ, `q at all points pC, ~pq P Mg,n, iff c1pVpg,m~λ,m`qq “

`m`d
d`1

˘

c1Vpg, ~λ, `q. In particular,
if d “ 0, so that the rank is one, we know by [GG12] for slr and ` “ 1, and by [BGK16] for
the general case,

c1Vpg,m~λ,m`q “ mc1Vpg, ~λ, `q.

Therefore for rank one bundles, geometric interpretations exist at all points.
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We can outline the proof of Theorem 3.5.2 in two steps:

1. Suppose that for every point x P Mg,n, there is a projective polarized pair pXx,Axq of
∆-invariant zero so that there is a canonical embedding as described above. One can
then take the canonical resolution of the ideal sheaf IXx for Xx.

2. By “glueing” the resolutions, we show there is an exact sequence

0 ÑWDbSymm´D
pVq Ñ ¨ ¨ ¨ ÑWbSymm´1

pVq Ñ Symm
pVq Ñ Vpg,m~λ,m`q˚ Ñ 0,

(3.5)

where theWi are vector bundles on Mg,n.

3.6 Idea of proof of Theorem 3.2.3

The proof of Theorem 3.2.3 can be outlined in four steps:

1. Define projective polarized pairs pXp~aq,LpGqq, where Xp~aq is a compactification of a
moduli space of~a-semistable vector bundles of rank r on C with trivializable determinant.
The compactification is obtained as a GIT quotient of torsion free sheaves. The semi-
stability condition is new; a generalization based on Seshadri and Simpson.

2. Show there are injections H0pXp~aq,LpGqq ãÑ H0pBunSLprqpCq,DpVqmq giving rise to a
map

F :
à

p~a,Gq

H0
pXp~aq,LpGqq ÝÑ

à

mPZ
H0
pBunSLprqpCq,DpVqmq.

3. Using conformal blocks, show that F is surjective. For this we use Theorem 3.3.2 and
Factorization. This involves a technical argument showing that certain sections extend
across poles.

4. Show that the part of left hand side necessary for the surjection of F is finitely generated.
This is achieved by noticing that the varieties Xp~aq which are involved are all Geometric
Invariant Theory (GIT) quotients of the same (master) space, and so one can use a
variation of GIT argument to get the claim.
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3.7 Appendix: Definition of Principal G-bundles

Definition 3.7.1. Let G be an algebraic group, X a variety, and T a Grothendieck topology.
A principal G-bundle on X with respect to T, is a morphism π : P Ñ X together with an
action Pˆ G a

Ñ P such that the following properties hold:

1. The diagrams

Pˆ G a //

π1
��

P
π
��

P π
// X

and Pˆ Gˆ G
idˆµ //

aˆid
��

Pˆ G
a
��

Pˆ G a
// P,

commute, where µ : Gˆ G Ñ G denotes the multiplication operation on G.

2. There exists a covering tY jPJU j Ñ Xu of X in the T topology, for which for each j P J
there are G-space isomorphisms ψ j : P|U j

–
Ñ U j ˆ G, meaning that the following two

diagrams

P|U j

ψ j //

π

��

U j ˆ G

π1
{{

U j

and P|U j ˆ G a //

ψ jˆid
��

P|U j

ψ j

��
U j ˆ Gˆ G

idˆµ
// U j ˆ G

commute.

Remark 3.7.2. If X is defined over a field of char 0, then the fppf and etale topologies are the
same. If G is simply connected and X is a curve, as in our situation, then this is the same as
working with the Zariski topology.

We now return to using the notation of G-bundles on C where C is a stable curve.

Definition 3.7.3. Let ρ : G Ñ GlpVq be a representation of G. If E is a family of G-
bundles on C parameterized by a scheme T, then given a point t P T, one has that Et is
a G-bundle on C, and one can form a vector bundle EtpVq on C by taking the contracted
product EtpVq “ Et ˆG V. The determinant of cohomology line bundle DEpVq is the line
bundle on T whose fiber over a point t P T is the lineDpC,EtpVqq, described in Def 3.2.1.

Definition 3.7.4. Let G be an algebraic group, π : E Ñ C a principal G-bundle on C, and
ρ : G Ñ GLpVq any representation. The contracted product E “ E ˆG V “ pE ˆ Vq{ „,
where pp ¨ g, vq „ pp, ρpgq ¨ vq, is a vector bundle on C, with fibers isomorphic to V: Given
x P C:

E|x “ Ex ˆG V – GˆG V – V.
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I referred to the following fact:

Lemma 3.7.5. Let G be any semisimple group. Given a principal G-bundle E, and any
representation ρ : G Ñ GLpVq, by the contracted product E “ E ˆG V, has trivial
determinant.

Proof. To see that detpEq is trivial, we note that since G is semisimple, rG,Gs “ G,
and so the image ρpGq is contained in the kernel of the determinant map which
is SLpVq. In particular, E has transition functions given by matrices with trivial
determinant. These are the transition functions of the line bundle detpEq, and so
detpEq is necessarily trivial. �
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Lecture 4

First Chern classes: vanishing,
identities, applications, and open
questions

4.1 Introduction

For g “ 0, and ~λ P P`pgqn, the vector bundle Vpg, ~λ, `q is a quotient of the constant bundle:

Apg, ~λq “ Apg, ~λq ˆM0,n � Vpg, ~λ, `q, where Apg, ~λq “ rVλ1 b ¨ ¨ ¨ b Vλnsg,

is the vector space of coinvariants. So for every point pC, ~pq P M0,n, there is a surjective map
of vector spaces

Apg, ~λq� Vpg, ~λ, `q|pC,~pq.

In other words, for
a “ rkpApg, ~λqq, and r “ rkpVpg, ~λ, `qq,

there is a composition of morphisms

M0,n
φ
ÝÑ Grquo

pApg, ~λq, rq
p
ÝÑ P “ Pp

a
rq´1, pC, ~pq ÞÑ rΛa Apg, ~λq� Λr

pVpg, ~λ, `q|pC,~pqs,

and the pullback of OPp1q on P is the conformal blocks divisor:

pp ˝ φq˚OPp1q “ c1pVpg, ~λ, `qq “ Dpg, ~λ, `q.

If Apg, ~λq – Vpg, ~λ, `q, then the two bundles have the same rank: a “ r, and for V “

Vpg, ~λ, `q, the map φc1pVq “ pp ˝ φq will contract everything in M0,n onto the point P “
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Pparq´1 “ P0. As will be explained, this always happens if ` ąą 0. In case g “ slr, specifically
for ` above the so-called critical level (Definition 4.2.1, and more generally for ` above the
so-called theta level (Definition 4.4.1). As will be clear, the critical and theta levels are
the same for sl2, but generally measure different aspects of the bundles. There are plenty of
divisors that are unexpectedly trivial, and so there may be some other level besides the critical
and theta levels that control vanishing.

This kind of vanishing is important for understanding the placement of the divisors in the
nef cone, which reflects the curves contracted by their associated morphisms. It also gives us
some information about how much of the nef cone the divisors may generate.

For instance, applications of vanishing above the critical level include criteria that guarantee
the divisors c1pVq intersect certain curves in degree zero: Said otherwise, the associated maps
φc1pVq contract those curves. In particular, we can use vanishing above the critical level to
show that maps φc1pVq factor through contractions from M0,n to Hassett spaces M0,A, where
the weight dataA is determined by the triple pslr`1, ~λ, `q.

It seems the upshot is that conformal blocks divisors are quite often extremal in the nef cone,
and the number of curves they contract increases as the level increases with respect to the
pair pg, ~λq.

It is an interesting question to determine just what divisors are nontrivial, and we discuss
this today too.

4.2 Vanishing above the critical level

4.2.1 Definition

Definition 4.2.1. If r` 1 divides
řn

i“1 |λi|, we refer to

clpslr`1, ~λq “ ´1`
řn

i“1 |λi|

r` 1
,

as the critical level for the pair pslr`1, ~λq. If ` “ clpslr`1, ~λq, and if ~λ P P`pslr`1q
n, then

Vpslr`1, ~λ, `q is called a critical level bundle, and c1pVpslr`1, ~λ, `qq “ Dpslr`1, ~λ, `q is called
a critical level divisor.

48



4.2.2 Vanishing and identities

Note that if ` “ clpslr`1, ~λq, then r “ clpsl``1, ~λTq, where ~λT “ pλT
1 , . . . , λ

T
nq. Here λT

i is
the weight associated to the transpose of the Young diagram associated to the weight λi. In
particular, |λi| “ |λT

i |, and so

n
ÿ

i“1

|λi| “ pr` 1qp` ` 1q “ p` ` 1qpr` 1q “
n
ÿ

i“1

|λT
i |.

In particular, critical level bundles come in pairs, and as we shall prove:

Theorem 4.2.2. [BGM15b] If ` “ clpslr`1, ~λq, then

1. c1pVpslr`1, ~λ, ` ` cqq “ 0, for c ě 1; and

2. c1pVpslr`1, ~λ, `qq “ c1pVpsl``1, ~λT, rqq.

After giving some examples and applications, we will prove part p1q of Theorem 4.2.2.

4.2.3 Examples

1. The bundle Vpslr`1, ωn
1 , `q is at the critical level for n “ pr ` 1qp` ` 1q. In [BGM15b]

we showed that the first Chern classes are all nonzero, and by Theorem 4.2.2, for
n “ pr` 1qp` ` 1q,

c1pVpslr`1, ω
n
1 , `qq “ c1pVpsl``1, ω

n
1 , rqq; and

c1pVpslr`1, ω
n
1 , ` ` cqq “ c1pVpsl``1, ω

n
1 , r` cqq “ 0 for all c ě 1.

2. The bundle Vpsl4, tω1, p2ω1 ` ω3q
3u, 3q is at the critical level, and its first Chern class

is self dual.

4.3 Applications

The main applications of vanishing above the critical level are extremality tests, and criteria
for showing that maps given by conformal blocks divisors factor through contraction maps
to Hassett spaces.
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Extremality test

Proposition 4.3.1. Let ~λ P P`pslr`1q
n, and suppose that N1,N2,N3,N4 is a partition of

rns “ t1, . . . ,nu into four nonempty subsets ordered so that if λpNiq “
ř

jPNi
|λ j|, then

λpN1q ď ¨ ¨ ¨ ď λpN4q. If
ř

jPt1,2,3u λpN jq ď r` `, then

c1pVpslr`1, ~λ, `qq ¨ FN1,N2,N3 “ 0,

and in particular, c1pVpslr`1, ~λ, `qq is extremal in the nef cone.

Proof. The intersection c1pVpslr`1, ~λ, `qq ¨ FN1,N2,N3 takes place in the boundary divisor

∆N1YN2YN3 – M0,|N1YN2YN3|`1 ˆM0,|N4|`1,

and in particular, in M0,|N1YN2YN3|`1. We can use factorization to examine the first
Chern class of the bundle V at points p P ∆N1YN2YN3 :

c1pVq|p –
à

µPP`pslr`1q

c1pVpslr`1, λpN1 YN2 YN3q Y µ, `qqc1pVpslr`1, λpN4q Y µ
˚, `qq.

We compute the critical level of Vpslr`1, λpN1 YN2 YN3q Y µ, `q, which is

(4.1) clpslr`1, λpN1 YN2 YN3q Y µq “ ´1`

ř

jPN1YN2YN3
|λ j| ` |µ|

r` 1

ď ´1`
r` ` ` r`

r` 1
ă ´1`

r` ` ` r` ` 1
r` 1

“ ´1`
pr` 1qp` ` 1q

r` 1
“ `.

In particular, Vpslr`1, λpN1 YN2 YN3q Y µ, `q is above the critical level, and so it has
trivial first Chern class. �

Criteria for mapping through Hassett Spaces

Definition 4.3.2. Fix a partition of rns “ t1, . . . ,nu into four nonempty sets N1, N2, N3,
N4 “ rnszN1YN2YN3, and consider the morphism M0,4 ÝÑ M0,n, where pC, pa1, a2, a3, a4qq ÞÑ

pX, pp1, . . . , pnqq, where X is the nodal curve obtained as follows. If |Ni| ě 2, then one glues
a copy of P1 to the spine pC, pa1, a2, a3, a4qq by attaching a point pP1, tp j : j P Niu Y tαiuq P

M0,|Ni|`1 to ai at αi. If |Ni| “ 1, one does not glue any curve at the point ai, but instead
labels ai by pi. We refer to any element of the numerical equivalence class of the image of this
morphism the F-Curve FpN1,N2,N3q or by FpN1,N2,N3,N4q, depending on the context.
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Background on Hassett spaces

Consider an n-tuple A “ ta1, . . . , anu, with ai P Q, 0 ă ai ď 1, such that
ř

i ai ą 2. In
[Has03], Hassett introduced moduli spaces M0,A, parameterizing families of stable weighted
pointed rational curves pC, pp1, . . . , pnqq such that (1) C is nodal away from its marked points
pi; (2)

ř

jPJ ai ď 1, if the marked points tp j : j P Ju coincide; and (3) If C1 is an irreducible
component of C then

ř

piPC1 ai ` number of nodes on C1 ą 2. These Hassett spaces M0,A

receive birational morphisms ρA from M0,n that are characterized entirely by which F-Curves
(see Def. 4.3.2) they contract.

Definition/Lemma 4.3.3. For any Hassett space M0,A, with A “ ta1, . . . , anu, there are
birational morphisms ρA : M0,n ÝÑ M0,A, contracting all F-curves FpN1,N2,N3,N4q

satisfying:
ř

iPN1YN2YN3
ai ď 1, and no others, where without loss of generality, the leg N4

carries the most weight.

Results on Hassett spaces

The following theorem, proved in [BGM15b] generalizes [Fak12, Proposition 4.7], where
g “ sl2 was considered.

Theorem 4.3.4. Let D “ D
slr`1,~λ,`

be such that:

1. 0 ă |λi| ď ` ` r for all i P t1, . . . ,nu;

2.
řn

i“1 |λi| ą 2pr` `q.

Then the morphism φD factors through ρA : M0,n ÝÑ M0,A, where A “ ta1, . . . , anu,
ai “

|λi|

r`` .

Proof. ForA “ ta1, . . . , anu, ai “
|λi|

r`` , as in the hypothesis, the condition |λi| ď ` ` r,
guarantees that ai ď 1 for all i, and

řn
i“1 |λi| ą 2pr` `q guarantees that

řn
i“1 ai ą 2.

By [Fak12, Lemma 4.6], we need to show that any F-curve FpN1,N2,N3,N4q con-
tracted by ρA is also contracted by φD. Suppose that ρA contracts the F-curve
FpN1,N2,N3,N4q, so that in particular, by Definition/Lemma 4.3.3,

ř

iPN1YN2YN3
ai ď 1.

Then
ř

jPt1,2,3u λpN jq “ pr ` `q
ř

jPt1,2,3u a j ď r ` `, and hence φD contracts F-curve
FpN1,N2,N3,N4q. �
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4.3.1 Examples: GIT and images of conformal blocks maps

While we have shown that many conformal blocks divisors give rise to maps that factor
through Hassett spaces, their images are not in general isomorphic to Hassett spaces. As
the following examples show, it does seem a likely possibility, that the type A conformal
blocks divisors give maps to spaces that have modular interpretations and have construc-
tions as GIT quotients. These particular examples have images that are birational to M0,n,
but in [BGM15a], we exhibit a divisor for which all the weights are nonzero and whose
corresponding morphism has positive dimensional fibers.

If D “ D
slr`1,~λ,1

is a nontrivial level one divisor, so that necessarily
ř

i |λi| “ pr` 1qpd` 1q,
for some d ě 1, then the image of φD is isomorphic to the generalized Veronese quotient
Ud,n //p0,Aq SLpd ` 1q, where ai “ |λi|{p1 ` rq [Gia13, GG12]. These spaces, which receive
morphisms from M0,A, are birational to M0,n and have modular interpretations [Gia13,
GJM13]. In [BGM15a], we prove that for all ` ě 1, the images of maps given by divisors
D
slr`1,`~λ,`

are also isomorphic to Ud,n //p0,Aq SLpd` 1q.

In [BGM15a] it was shown that for all ` ě 1, and r ě 1, the divisor D “ Dslr`1,ωn
1 ,`

is
non-trivial. Because it is Sn-invariant, by [KM13, Gib09], it is big, and the corresponding
morphism φD is birational. By [BGM15a], for A “ p 1

``r , . . . ,
1
``rq, ` ą 1, and r ą 1, the

maps ρA and φD contract the same F-curves. According to the F-conjecture, the divisors
D and ρ˚

A
pAq, where A is any ample divisor on M0,A conjecturally lie on the same face of

the nef cone of M0,n. In particular, the (normalization of the) image of the morphism φD

should be isomorphic to M0,A. Moon has shown that M0,A can be constructed as a GIT
quotient of M0,ApP1, 1q by SLp2q. The case ` “ 1, the image of φD was shown in [Fak12] to
be isomorphic to pP1qn //A SLp2q, where ai “ 1{pr ` 1q. In case r “ 1, the image of φD was
shown in [GJMS13] to be isomorphic to U`,n //pδ,Aq SLp` ` 1q, where δ “ `´1

``1 , ai “
1
``1 .

4.3.2 Sketch of proof of vanishing above the critical level

To prove Part (1) of Theorem 4.2.2, we use the cohomological version of Witten’s Dictionary,
which follows from [Wit95] and the twisting procedure of [Bel08], see Eq (3.10) from [Bel08].

Theorem 4.3.5. Let V “ Vpslr`1, ~λ, `q be a vector bundle onMg,n such that
řn

i“1 |λi| “

pr` 1qp` ` sq for some integer s.

1. If s ą 0, then let λ “ `ω1. The rank of V is the coefficient of qsσ`ωr`1 in the quantum
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product
σλ1 ‹ σλ2 ‹ ¨ ¨ ¨ ‹ σλn ‹ σ

s
λ P QH˚

pGrpr` 1, r` 1` `qq.

2. If s ď 0, then the rank of V is the multiplicity of the class of a point σkωr`1 in the product

σλ1 ¨ σλ2 ¨ ¨ ¨ ¨ ¨ σλn P H˚
pGrpr` 1, r` 1` kqq,

where k “ ` ` s.

Examples of rank computations using Theorem 4.3.5 can be found in [BGM15b, BGM15a,
Kaz16, Hob15] and [BGK16].

Proof. Write ˜̀“ clpslr`1, ~λq ` 1. We’ll consider the following two cases:

1. ~λ P P ˜̀pslr`1q
n so that Vpslr`1, ~λ, ˜̀qmakes sense, and there is a surjective map

Apslr`1, ~λq� Vpslr`1, ~λ, ˜̀q.

2. ~λ R P ˜̀pslr`1q
n.

In case ~λ P P ˜̀pslr`1q
n, we know that by Beauville’s quotient construction, as the level

grows, the rank decreases:

rkpVpslr`1, ~λ, ˜̀qq ď rkpVpslr`1, ~λ, `q ď rkpApslr`1, ~λq.

So it is enough to show in this case that

rkpVpslr`1, ~λ, ˜̀qq “ rkpApslr`1, ~λq.

In the second case, we’ll argue that rkpApslr`1, ~λq “ 0. Both follow from the Coho-
mological form of Witten’s Dictionary, Theorem 4.3.5.

In the first case, since
řn

i“1 |λi| “ pr` 1qp ˜̀q, we have that s “ 0 in Theorem 4.3.5, and
so rkpVpslr`1, ~λ, ˜̀qq “ rkpApslr`1, ~λq, as claimed.

In the second case, we know that |λi| ď `r for all i but that |λi| ą ˜̀r for some i. This
means in particular that λp1qi ą ˜̀ for some i. We may reliable so that

k “ λp1q1 ě ¨ ¨ ¨λp1qn .

Since
řn

i“1 |λi| ă pr` 1qk, we write
řn

i“1 |λi| “ pr` 1qpk ´ pq, for some p ą 0. Setting
µ1 “ µ2 “ ¨ ¨ ¨ “ µp “ ωr`1 – ω0, by Propagation of Vacua:

Vpslr`1, ~λY ~µ, `q – Vpslr`1, ~λ, `q,
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and since
řn

i“1 |λi| `
řp

j“1 |µ j| “ pr` 1qpk´ pq ` pr` 1qp “ pr` 1qk, we can compute
the rank by computing the intersection

σλ1 ‹ ¨ ¨ ¨ ‹ σλn ‹ σ
p
ωr`1

P Grpr` 1, r` 1` kq.

By a calculation, this is zero. �

4.4 The theta level

The theta level (Def 4.4.1), comes from the interpretation of a vector space of conformal blocks
as an explicit quotient [Bea96, Proposition 4.1] see also [?]), and holds in all types.

4.4.1 Definition of the theta level

Definition 4.4.1. [BGM15b] Given a pair pg, ~λq, one refers to

θpg, ~λq “ ´1`
1
2

n
ÿ

i“1

pλi, θq P
1
2
Z

as the theta level of the pair pg, ~λq.

Remark 4.4.2. In Definition 4.4.1, as described in Lecture 2.1, θ is the highest root, and
p , q is the normalized Killing form.

4.4.2 Vanishing above the theta level

Using [Bea96, Proposition 4.1] one can prove that conformal blocks divisors vanish above
the theta level:

Proposition 4.4.3. Suppose that ` ą θpg, ~λq, then c1pVpg, ~λ, `qq “ 0.

4.4.3 Applications

Proposition 4.4.4. [BGM15b] Let ~λ P P`pgqn, and suppose that N1,N2,N3,N4 is a par-
titionpartion of rns “ t1, . . . ,nu into four nonempty subsets ordered so that if λpNiq “
ř

jPNi
|λ j|, then λpN1q ď ¨ ¨ ¨ ď λpN4q. If

ř

jPt1,2,3u λpN jq ď ` ` 1, then

c1pVpg, ~λ, `qq ¨ FN1,N2,N3 “ 0,
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and in particular, c1pVpg, ~λ, `qq is extremal in the nef cone.

The proof of Proposition 4.4.4 is analogous to that of Proposition 4.3.1.

Theorem 4.4.5. [BGM15b] Let D “ D
g,~λ,` be such that:

1. 0 ă |λi| ď ` ` 1 for all i P t1, . . . ,nu;

2.
řn

i“1 |λi| ą 2p` ` 1q.

Then the morphism φD factors through ρA : M0,n ÝÑ M0,A, where A “ ta1, . . . , anu,
ai “

|λi|

``1 .

The proof is analogous to the proof of Theorem 4.3.4.

4.4.4 Examples comparing the theta and critical levels

Example 4.4.6. The bundle V “ Vpsl3, ω6
1, 1q on M0,6 is at the critical level and so by

Theorem 4.2.2, we have

1. c1pVpsl3, ω6
1, 1qq “ c1pVpsl2, ω6

1, 2qq; and

2. c1pVpsl3, ω6
1, 1` cqq “ c1pVpsl2, ω6

1, 2` cqq “ 0 for all c ě 1.

The critical and theta levels for sl2 bundles are equal, but the theta level for the bundle V is
2, and so in this case, CL-vanishing is stronger than θ-level vanishing.

Example 4.4.7. The bundle V “ Vpsl3, t2ω1 ` ω2, ω2, 2ω1, 2ω2, 3ω2u, 5q on M0,5 is at the
critical level and so by Theorem 4.2.2, we have

1. c1pVq “ c1pVpsl6, tω1 ` ω3, 2ω1, ω2, 2ω2, 2ω3u, 2qq; and

2. c1pVpsl3, t2ω1`ω2, ω2, 2ω1, 2ω2, 3ω2u, 5`cqq “ c1pVpsl6, tω1`ω3, 2ω1, ω2, 2ω2, 2ω3u, 2`
cqq “ 0 for all c ě 1.

In this case, for the sl3 bundle V, the theta level is 4.5 ă 5, and so in fact, by Theorem 4.4.3,
c1pVq “ c1pVpsl6, tω1`ω3, 2ω1, ω2, 2ω2, 2ω3u, 2qq “ 0, and in this case, θ-level vanishing
is stronger than CL vanishing.

The upshot is that except for sl2, when Theta-level and Critical-level are the same, the
vanishing results give different information about the bundles.
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4.5 The problem of nonvanishing

Recall that we know at least three circumstances during which a conformal blocks divisor
c1pVpg, ~λ, `qq will be zero:

1. If R “ RkpVpg, ~λ, `qq “ dimpApg, ~λqq “ A, then the contraction morphism given by
c1pVpg, ~λ, `qq has image equal to a point:

M0,n Ñ Grassquo
pApg, ~λq,Rq Plücker

ãÑ Pp
A
Rq´1

“ pt.

pC, ~pq ÞÑ rApg, ~λq� Vpg, ~λ, `q|pC,~pqs ÞÑ rΛA Apg, ~λq� ΛRVpg, ~λ, `q|pC,~pqs.

2. If ` ą θpg, ~λq “ ´1`
ř

i“1 `pλiq

2 ; or

3. In case g “ slr`1, if If ` ą cpslr`1, ~λq “ ´1`
ř

i“1 |λi|

r`1 .

As it turns out, c1pVpsl2, ~λ, `qq ‰ 0 as long as

1 ď ` ď clpsl2, ~λq “ θpsl2, ~λq, and rkpVpsl2, ~λ, `qq ą 0.

As we shall see today, a similar result holds when the critical and theta levels coincide.
This is not the case generally, as we see in many examples even for sl4. For example,
the bundle Vpsl4, tω2 ` ω3, ω1, ω1 ` 2ω2, 2ω1 ` ω3u, 3q is at the critical level, and it is
below the theta level (which is 3.5). The rank of Vsl4,tω1,p2ω1`ω3q3u,3 on M0,4 is one, while the
dimension of the vector space of coinvariants Asl4,tω1,p2ω1`ω3q3u is 2. A calculation shows that
Dsl4,tω1,p2ω1`ω3q3u,3 “ 0.

Examples like this have led us in [BGM15a] to ask when divisors are nonzero.

Question 4.5.1. What are necessary and sufficient conditions for a triple pg, ~λ, `q that
guarantee that the associated conformal blocks divisor D

g,~λ,` is nonzero?

One approach, is to decompose a vector bundle into simpler bundles, whose vanishing may
be understood more readily, and I will present today an additive identity (Proposition 4.6.1)
dependent on ranks. For instance, one can decompose the divisor above as the following sum

Dsl4,tω1,2ω1`ω3,2ω1`ω3,2ω1`ω3u,3 “ Dsl4,tω1,...,ω1u,1 ` Dsl4,t0,ω1`ω3,ω1`ω3,ω1`ω3u,2.

Both of the divisors on the right hand side turn out to be trivial: the first since it is above the
critical level, and the second, because it is pulled back from M0,3.

We’ll also see another type of identity in type A, where we decompose the Lie algebra and the
weights. This gives a non-vanishing result in case the critical and theta levels coincide, such
as the sl2 result mentioned earlier. To prove the second identity one uses an interpretation of
conformal blocks in terms of generalized theta functions.
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4.6 Additive identities dependent on ranks

I will explain the following criteria, given in [BGM15a] for decomposing a divisor as an
effective sum of simpler conformal blocks divisors.

Proposition 4.6.1. Let ~µ P P`pgqn, and ~ν P Pmpgq
n be two n-tuple of dominant weights

such that rkVg,~µ,` “ 1, and rkVg,~µ`~ν,``m “ rkVg,~ν,m “ δ. Then

Dg,~µ`~ν,``m “ δ ¨ Dg,~µ,` ` Dg,~ν,m.

Before giving an outline of the proof of Proposition 4.6.1, I’ll give some of the applications
we showed in [BGM15a].

Using Proposition 4.6.1 in conjunction with the quantum generalization of a conjecture of
Fulton in invariant theory [Bel07] and [BK16, Remark 8.5], we show in Corollary 4.6.2 that
if rkpVpslr`1,N~λ,N`q “ 1, then

Dpslr`1,N~λ,N`q “ N ¨ Dpslr`1, ~λ, `q, @N P N.

As an application of this, one can identify images of the maps φD for D “ Dpslr`1, `~λ, `q “

` Dpslr`1, ~λ, 1q, as the generalized Veronese quotients of [Gia13, GJM13].

Proposition 4.6.1 can be used to show that a divisor is nontrivial, by writing it as an effective
sum of simpler divisors, and then showing one of the summands is nontrivial.

In [BGM15a], we use Proposition 4.6.1 to give non-trivial conformal blocks divisors, with
non-zero weights, that do not give birational morphisms. Such examples were not known
before. One may also approach questions of mysterious vanishing in this way, seeing for
example a divisor as a sum of divisors whose vanishing can be explained by other means.

This result enables one to simplify questions of vanishing of a particular divisor into problems
about its simpler constituent parts. But there have been more applications as well. For
example, in ([Kaz16], Theorem 1.1) this result was used to prove that any Sn-invariant
divisor for sln on M0,n coming from a bundle of rank one was in fact a sum of level one
divisors in type A. In particular, the cone generated by infinitely many such divisors is
finitely generated.

Fulton conjectured that if rkpApslr`1, ~λqq “ 1 then rkpApslr`1,N~λqq “ 1 @ N P Zą0.
This was proved by Knutson, Tao and Woodward [KTW04]. The quantum generalization
of Fulton’s conjecture [Bel07, BK16] is the following: Suppose rkpVpslr`1, ~λ, `q “ 1 (` is
not necessarily the critical level) then rkpVpslr`1,N~λ,N`qq “ 1 for all positive integers N.
Using this generalization and Proposition 4.6.1, we obtain (by induction):
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Corollary 4.6.2. If rkpVpslr`1, ~λ, `qq “ 1, then Vpslr`1,N~λ,N`qq “ N Vpslr`1, ~λ, `qq, @
N P Zą0.

Remark 4.6.3. Corollary 4.6.2 appears in case r “ 1 and ~λ “ pω1, . . . , ω1q in ([GJMS13],
Proposition 5.2). An analogous result for g “ so2r`1 appears in the work of Mukhopadhyay.
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