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Abstract

These are notes from two lectures I gave at the Fields Institute during the major thematic
program on Combinatorial Algebraic Geometry, for which I was asked to be prepared to
talk on combinatorial aspects of Mg.

The scientific aims of the overall program were to: (1) introduce the study of ”com-
binatorial varieties” to the mathematical community as a thematically unified whole, (2)
refine the techniques used within algebraic geometry to study combinatorial varieties, and
(3) enlarge the class of algebraic spaces which have a recognized combinatorial structure.
The organizers told us that they hoped that the Introductory Workshop would help to
define Combinatorial Algebraic Geometry as a coherent subfield.

I must say that I found the task of writing two talks on combinatorial aspects of the
moduli space of curves to be paralyzing, mainly due to the incredible amount of work on
Mg of this flavor. There are a number of groups of researchers whose work on the moduli
of curves or related spaces I would say could be classified as combinatorial.

In the end I decided to frame my discussion around two problems which came from
a comparison of Mg with toric varieties, one of which has recently been solved (nearly at
least), another which remains stubbornly open, and questions that have emerged from
these. This gave me the opportunity to introduce vector bundles of conformal blocks,
which are defined on the stacks Mg,n. For g “ 0, the bundles are globally generated,
and therefore their Chern classes have positivity properties: first Chern classes are base
point free, and higher Chern classes give elements of Fulger and Lehman’s Pliant cones.
There are combinatorial aspects of vector bundles of conformal blocks, and many open
problems about them, some of which I was able to discuss briefly at Fields.
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Lecture 1

Introduction to combinatorial Mg

Moduli spaces of curves occupy a distinguished position in algebraic geometry. As
moduli spaces, they give insight into the study of smooth curves and their degenerations,
they have played a principal role as a prototype for moduli of higher dimensional varieties
[KSB88, Ale02, HM06, HKT06, HKT09, CGK09]. As special varieties, they have been one
of the chief concrete, nontrivial settings where the nuanced theory of the minimal model
program has been exhibited and explored [HH09, HH13, AFSvdW16, AFS16a, AFS16b].

It is not uncommon to refer to certain varieties as combinatorial: these include (but
of course are not limited to) toric varieties: like projective space, weighted projective
spaces, and certain blowups of those, Grassmannian varieties, or even more generally
homogeneous varieties. These all come with group actions, and combinatorial data
encoded in convex bodies keeps track of their important geometric features. Certain
varieties like the moduli space of curves, have combinatorial structures reminiscent of
varieties that are more traditionally considered to be combinatorial. As a result, various
analogies have been made between them and the moduli of curves. Such comparisons
have led to questions and conjectures, surprising formulas, and even arguments that have
been used to detect and to prove some of the most important and often subtle geometric
properties of the moduli space of curves.

I will try to illustrate the combinatorial nature of the moduli space of curves with
examples close to my own experience. As you can see from other more complete surveys
[Har84, Far09, Abr13, Cos10], this is a long studied subject with many points of focus!

1.1 What is Mg and why do we we want to compactify it?

Points in Mg correspond to isomorphism classes of smooth curves of genus g.
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If C is a smooth curve (a 1-dimensional scheme over an algebraically closed field k),
then its genus is

g “ dim H0
pC, ωCq “ dim H1

pC,OCq,

where ωC is the sheaf of regular 1-forms on C. If k “ C, then C is a smooth compact
Riemann surface, and the algebraic definition of genus is the same as the topological
definition.

Given any flat family F Ñ B of curves of genus g, there is a morphism B Ñ Mg, that
takes a point in the base b to the isomorphism class of the fiber. In fact Mg is something
called a coarse moduli space. Because every curve with automorphisms can be used to
construct a nontrivial family whose fibers are all isomorphic, one can show that Mg is not
a fine moduli space. For these definitions, and some examples, see the Chapter 3.

Intuitively, smooth curves degenerate to singular ones. For example, we can write
down the “general curve of genus 2” using the equation:

y2
“ x6

` a5x5
` a4x4

` ¨ ¨ ¨ ` a1x` a0.

A general point pa0, . . . , a5q P A6 determines a smooth curve. In other words, there is a
family of curves parametrized by an open subset of A6, that includes the general smooth
curve of genus 2. Certainly you can see that as the coefficients change the curves will
sometimes have singularities.

To usefully parametrize families of curves like this one, it really pays to work with
a proper space that parametrizes curves that have singularities. The space we will talk
about today is denoted Mg, and it parametrizes stable curves of genus g.

Definition 1.1.1. A stable curve C of (arithmetic) genus g is a reduced, connected, one dimen-
sional scheme such that

1. C has only ordinary double points as singularities.

2. C has only a finite number of automorphisms.

Remark 1.1.2. To say that C has only a finite number of automorphisms, comes down to requiring
that if Ci is a nonsingular rational component, Ci meets the rest of the curve in at least three points,
and if Ci is a component of genus one, then it meets the rest of the curve in at least one point.

Definition 1.1.3. Let Mg, the moduli space of stable curves of genus g be the variety whose points
are in one-to-one correspondence with isomorphism classes of stable curves of genus g.
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That such a variety Mg exists is nontrivial. This was proved by Deligne and Mumford
who constructed Mg using Geometric Invariant Theory [DM69]. There are other choices of
compactifications of Mg, and some of these compactifications receive birational morphisms
from Mg; other compactifications just receive rational maps from Mg.

One could for example, consider the compactification of Mg by the moduli space M
ps
g

of pseudo-stable curves.

Definition 1.1.4. A complete connected curve is pseudo stable if

1. it is reduced, and has at worst simple nodes and cuspidal singularities;

2. Every subcurve of genus 1 meets the rest of the curve in at least two points;

3. Every subcurve of genus zero meets the rest of the curve in at least three points.

Replacing elliptic tails with cusps gives the morphism

T : Mg ÝÑ M
ps
g .

The morphism T is an isomorphism outside of a codimension one locus ∆1, whose generic
point rCs P Mg is a curve C with a single separating node, whose normalization is a curve
of genus one and a curve of genus g´ 1.

We can keep track of this information using cones of divisors and curves in the Neron
Severi space, which I will take a moment to define.

1.2 Cones of divisors

Let X be a projective, not necessarily smooth variety defined over an algebraically
closed field. Good references for the concepts below are [Laz04a, Laz04b].

Definition 1.2.1. A variety X is called Q-factorial if every Weil divisor on X is Q-Cartier. We
assume today that X is a Q-factorial normal, projective variety over the complex numbers. The
moduli spaces Mg,n have these properties.

Definition 1.2.2. Two divisors D1 and D2 are numerically equivalent, written D1 ” D2, if they
intersect all irreducible curves in the same degree. We say two curves C1 and C2 are numerically
equivalent, written C1 ” C2 if C1 ¨D “ C2 ¨D for every irreducible subvariety D of codimension
one in X.
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Definition 1.2.3. We set N1pXqZ equal to the vector space of curves up to numerical equivalence,
and N1pXqZ equal to the vector space of divisors up to numerical equivalence, and set

N1
pXqQ “ N1

pXqZ bZ Q, N1
pXq “ N1

pXqR “ N1
pXqZ bZ R,

and
N1pXqQ “ N1pXqZ bZ Q, N1pXq “ N1pXqR “ N1pXqZ bZ R.

The nef and pseudo-effective cones on X are subcones of vector spaces Nk
pXq, and

NkpXq, which can be define analogously, and which I define for arbitrary proper varieties
in Section 3.3.1. This perspective involves thinking about cycles as being naturally dual
to Chern classes of vector bundles.

Definition 1.2.4. The pseudo effective cone EffkpXq Ă NkpMg,nq is defined to be the closure of the

cone generated by k-cycles with nonnegative coefficients. Similarly Eff
k
pXq Ă Nk

pXq is defined to
be the closure of the cone generated by cycles of codimension k with nonnegative coefficients.

The cones EffkpXq, and Eff
k
pXq are full dimensional, spanning the vector spaces NkpXq,

and Nk
pXq. They are pointed (containing no lines), closed, and convex.

Definition 1.2.5. The Nef Cone Nefk
pXq Ă Nk

pXq is the cone dual to EffkpXq.

As the dual of EffkpXq, the nef cone has all of the nice properties that EffkpXq does.
The nef cone can also be defined as the closure of the cone generated by semi-ample

divisors – divisors that correspond to morphisms, and

f : X Ñ Y is a regular map, then f ˚pNefpYqq Ă Nef1
pXq.

Given a projective variety Y, and a morphism f : X ÝÑ Y ãÑ PN, then for any ample
divisor A “ Op1q|Y on Y, one has the pullback divisor D “ f ˚A on X is base point free. In
fact, this divisor D is not only base point free, it has the much weaker property that it is
nef. For if C is a curve on our projective variety X, then by the projection formula

D ¨ C “ f˚pD ¨ Cq “ A ¨ f˚C,

which is zero if the map f contracts C, and otherwise, as A is ample, it is positive.
It is not true that every nef divisor on an arbitrary proper variety X has an associated

morphism; To have such a property would be very special (a dream situation). But as we
saw above, the divisors that give rise to maps do live in the nef cone, and for that reason
the nef cone can be used a tool to understand the birational geometry of the space.

8



Definition 1.2.6. For a Q-Cartier divisor D on a proper variety X, we define:

• the stable base locus of D to be the union (with reduced structure) of all points in X which
are in the base locus of the linear series |nmD|, for all n, where m is the smallest integer ě 1
such that mD is Cartier;

• A moving Q-Cartier divisor to be a divisor whose stable base locus has codimension 2 or
more; and

• the moving cone MovpXq of X, is the closure of the cone of moving divisors.

Sufficiently high and divisible multiples of any effective divisor D on X will define a
rational map (although not necessarily a morphism) from X to a projective variety Y. The
stable base locus of D is the locus where the associated rational map will not be defined.
The pseudo-effective cone may be divided into chambers having to do with the stable
base loci [ELM`06, ELM`09]. Moreover, if

f : X 99K Y is a rational map, then f ˚pNefpYqq Ă MovpXq,

and we have
Nef1

pXq Ď MovpXq Ď Eff
1
pXq.

1.3 Examples

I will start with a simple example to illustrate how even very crude information about
the location of the cone of nef divisors with respect to the effective cone tells us valuable
information about the geometry of the variety X, as we see for Mg. Then we will look at a
chamber decomposition of the nef cone of M3, as pictured on the poster for the semester
program.

1.3.1 Nef1
pXq Ď MovpXq Ď Eff

1
pXq

Theorem 1.3.1. Every nef divisor on Mg is big. In particular, there are no morphisms, with
connected fibers from Mg to any lower dimensional projective varieties other than a point.

Theorem 1.3.1 says that the nef cone of Mg sits properly inside of the cone of effective
divisors– and their extremal faces only touch at the origin of the Nerón Severi space.

The statement for pointed curves is a little bit more complicated, but still very simple
in the grand scheme of things:
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Figure 1.1: Nef1
pM3q Ă Eff

1
pM3q

with generators λ, 12λ ´ δ0, and
10λ´ δ0 ´ 2δ1.

Figure 1.2: A partial chamber de-
composition of

Nef1
pM3q Ă MovpM3q Ă Eff

1
pM3q

seen in a cross section.

Theorem 1.3.2. For g ě 2, any nef divisor is either big or is numerically equivalent to the
pullback of a big divisor by composition of projection morphisms. In particular, for g ě 2, the
only morphisms with connected fibers from Mg,n to lower dimensional projective varieties are
compositions of projections given by dropping points, followed by birational maps.

1.3.2 A chamber decomposition for NefpM3q Ă Eff
1
pM3q

The first work on these cones was done by Mumford in [Mum83], where everything
was worked out for M2, and where it was checked that the intersection theory could be

done on Mg in general. By [Fab90a], we know that NE
1
pM3q is spanned by the classes

δ0 “ r∆0s, δ1 “ r∆1s and the class h of the hyperelliptic locus H3. The hyperelliptic locus
Hg on Mg is isomorphic to ĂM0,2g`2 under the map

h : ĂM0,2g`2
–
ÝÑ Hg Ď Mg,

given by taking a double cover branched at the marked points. For g “ 2, the map is
an isomorphism, for g “ 3 the image has codimension one, and for g ě 4 the image has
higher codimension and isn’t a divisor.

There is a partial chamber decomposition of NefpM3q Ă MovpM3q Ă NE
1
pM3q. Two

chambers have to do with different compactifications of the moduli spaceAg of principally
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polarized abelian varieties: The classical Torelli map

Mg
t
ÝÑ Ag,

which takes a smooth curve X of genus g to its Jacobian, doesn’t extend to a morphism
on Mg. But there are extensions to various compactifications ofAg.

The Satake Chamber

Let A
Sat
g be the Satake compactification of the moduli space Ag. The classical Torelli

map extends to a regular map

tSat : Mg ÝÑ A
Sat
g .

This morphism is given by the divisor λ. In other words, λ “ ptSatq˚pAq, where A is an

ample divisorA
Sat
g .

1.3.3 The 2nd Voronoi Chamber

We letA
Vor
g : be the toroidal compactification ofAg for the 2nd Voronoi fan. The Torelli

map is known to extend to the regular map

tg : Mg
tSat

ÝÑ A
Vorp2q
g .

This morphism is given by a divisor which lies on the (interior of the) face of the nef cone
spanned by λ and 12λ´ δ0.

The Shepherd-Barron Unknown (SBU) Chamber

There is a morphism
f : Mg ÝÑ X,

given by the base point free extremal nef divisor 12λ ´ δ0. As far as I know, there isn’t a
modular interpretation for X.

1.3.4 The Pseudo-Stable Chamber

Let M
ps
g be the moduli stack of pseudo stable curves. Replacing elliptic tails with cusps

gives the divisorial contraction
T : Mg ÝÑ M

ps
g .

T is given by a divisor that lies on the face of the nef cone spanned by 12λ ´ δ0 and
10λ´ δ0 ´ 2δ1.
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The C-Stable Chamber

Let M
cs
g be the moduli space of c-stable curves. Contracting elliptic bridges to tacnodes

defines the small modification ψ : M
ps
g ÝÑ M

cs
g , and composing with T defines a regular

map

Mg
T
ÝÑ M

ps
g

ψ
ÝÑ M

cs
g ,

given by the extremal divisor 10λ´ δ0 ´ 2δ1.

1.3.5 The First Flip: H-Semistable Curves in the Moving Cone

We can also see the first flip: Let M
hs
g be the moduli space of h-semistable curves. There

is a morphism ψ` : M
hs
g ÝÑ M

cs
g which is a flip of ψ:

Mg

T

~~

��

M
ps
g

ψ ��

pM
ps
g q
` “ M

hs
g

ψ`
yy

M
cs
g .

We can see the chamber of the effective cone of M3 corresponding to M
hs
g . It doesn’t

touch the Nef cone of M3 because there isn’t a morphism from M3 to M
hs
g . Instead, there

is a rational map, which for g “ 3 is given by the moving divisors pictured.
There is another chamber of the moving cone, as we can see in the picture. This

corresponds to the pullback of the nef cone of the second flip.

1.4 The boundary MgzMg

1.4.1 The boundary described as a sublocus

The boundary of Mg consists of a union of components having at least one node.
Components of the boundary come in two types, which which we may describe in a
number of ways.
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1. The components ∆i can be described as having generic point with a separating node;
the closure of the set of curves whose normalization consists of a pointed curve of
genus i and a pointed curve of genus g´ i; the image of the attaching map

Mi,1 ˆMg´i,1 � ∆i,

given by attaching curves by gluing their marked points together.

2. The component ∆0 “ ∆irr can be described as having generic point with a nonsep-
arating node; the closure of the locus of curves whose normalization is a curve of
genus g´ 1 with two marked points; and the image of the clutching map

Mg´1,2 � ∆0 “ ∆irr,

given by taking a curve of genus g ´ 1 with two marked points to a nodal curve of
genus g by gluing the two marked points together.

As one can see in the descriptions of the boundary components, moduli of pointed
curves come up naturally even if one is only interested in studying Mg.

Definition 1.4.1. A stable n-pointed curve is a complete connected curve C that has only
nodes as singularities, together with an ordered collection p1, p2, . . ., pn P C of distinct
smooth points of C, such that the pn ` 1q-tuple pC; p1, . . . , pnq has only a finite number of
automorphisms.

Definition 1.4.2. For g “ 0, let n ě 3, and for g “ 1, let n ě 1:

Mg,n : pSchkq Ñ pSetsq, T ÞÑMg,npTq,

whereMg,npTq is the set of proper families pπ : X Ñ T; tσi : T Ñ Xun
i“1q such that the fiber

pXt, tσiptqun
i“1q, at every geometric point t P T is a stable n-pointed curve of genus g modulo

isomorphism over T.

Theorem 1.4.3. [KM76,Knu83a,Knu83b] There exists a coarse moduli space Mg,n for the
moduli functor Mg,n; it is a projective variety that contains Mg,n as a dense open subset.
Moreover, M0,n is a smooth projective variety that is a fine moduli space forM0,n.

13



The components of the boundary of Mg of codimension k have analagous descrip-
tions:

Definition 1.4.4. δkpMgq “ trCs P Mg| C has at least k nodes u.

One can see that δkpMgq is the union of irreducible components, each of which can be
constructed as the image of attaching and clutching maps from products of moduli
of marked point spaces.

This gives a stratification of the space determined by the topological type of the
curves being parametrized. Not unlike the torus invariant fixed loci of a toric
variety, this has led researchers to ask questions about the moduli space of curves to
determine if has features in common with toric varieties. These analogies influence
current guiding problems and some that have been recently solved.

1.4.2 The boundary described by weighted graphs

Given a curve C of genus g, its dual graph ΓpCq has a vertex vi corresponding to
each irreducible component Ci. The graph is weighted: Each vertex vi is assigned an
integer weight gpviq corresponding to the genus of Ci. Corresponding to each node,
where a point of Ci meets a point of C j, there corresponds an edge joining vertices vi

and v j. The genus of ΓpCq and of the curve C is given by the formula:

b1pΓpCq,Zq `
ÿ

vPVpΓpCqq

gpvq.

The graph ΓpCq and the curve C are stable if every vertex v of genus gpvq “ 0 has
valence at least 3, and every vertex v with gpvq “ 1 has valence at least 1.

Each irreducible component of the boundary MΓ corresponds to a type of weighted
graph γ which itself is a moduli space of codimension

|EpΓq| “ the number of edges of Γ.

and
Mg “ YgpΓq“gMΓ.

The closure MΓ Ą MΓ1 , if and only if Γ1 Ñ Γ is a contraction: these are maps,
contracting an edge connecting vertices v1 and v2 with genera g1 and g2 giving a
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vertex with genus g1 ` g2, or contracting a loop on a vertex with genus g resulting
in a vertex with genus g` 1.

A number of generalizations of the moduli space of curves have arisen from this
boundary stratification. For example, the moduli space of rooted trees of projective
d-spaces [CGK09], described in Section ??, and the moduli space of tropical curves,
described in Section 3.2.1.

In my second lecture I will talk problems about Mg itself that have come directly
from combinatorial analogies inspired by the boundary stratification.
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Lecture 2

Cones of positive cycles on Mg,n

Cones of positive cycles are combinatorial devices that encode geometric data about
proper varieties. Such cones of divisors and curves are the customary, time-honored,
long established, and even familiar tools of the minimal model program. As we’re
starting to learn, their higher codimension analogues can behave very differently.

For instance, for any proper variety X we know that Nef1
pXq is contained in the

pseudoeffective cone of codimension one cycles Eff
1
pXq. But, as was proved in

[DELV10], if E is an elliptic curve with complex multiplication, then Eff
k
pErq Ĺ

Nefk
pErq for 1 ă k ă r ´ 1. In [Ott15], an example was given of a variety X of lines

on a very general cubic fourfold where Eff
2
pXq Ĺ Nef

2
pXq. Nef cycles of higher

codimension fail to satisfy other nice properties of nef divisors: For instance, the
product of two nef cycles is not necessarily nef.

To more accurately capture the properties of cycles of higher codimension, Fulger
and Lehmann have introduced three sub-cones: the Pliant cone, the base-point free
cone, and the universally pseudoeffective cone. A lot of work, and many open
problems are emerging [FL14, CC14, Ott15, CC15, LO16, CLO16]. For instance, there
are explicit examples of full-dimensional subcones of the Pliant cone of M0,n in all
codimension.

After a few basic definitions, I will discuss some of the questions that have come up
about such cones of cycles on Mg,n.
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2.1 The F-Conjecture

Recall from the first lecture that in Mg,n, the locus

δk
pMg,nq “ tpC, ~pq P Mg,n : C has at least k nodes u

has codimension k. For each k, the set δkpMg,nq decomposes into irreducible compo-
nent indexed by dual graphs Γ with k edges. Moreover, the closure of the component
corresponding to Γ contains components consisting of curves whose corresponding
dual graph Γ1 contracts to Γ. The resulting stratification of the space is both reminis-
cent and analogous to the combinatorial structure determined by the torus invariant
loci of a toric variety.

On a complete toric variety, every effective cycle of dimension k can be expressed as
a linear combination of torus invariant cycles of dimension k. Fulton compared the
action of the symmetric group Sn on M0,n with the action of an algebraic torus a toric
variety. Following this analogy, he asked whether a variety of dimension k could be
expressed as an effective combination of boundary cycles of that dimension. As M0,n

is rational, of dimension n´3, this is true for points and cycles of codimension n´3.
For the statement to be true for divisors, it would say that every effective divisor
would be in the cone spanned by the boundary divisors. This was proved false by
Keel [GKM02, page 4] and Vermeire [Ver02], who found effective divisors not in
the convex hull of the boundary divisors. For the statement to be true for curves,
it would say that the Mori cone of curves is spanned by irreducible components of
δn´4pM0,nq: whose dual graph is distinctive: the only vertex that isn’t trivalent has
valency four. In particular, these are all curves that can be described as images of
attaching or clutching maps from M0,4.

Of course this question could just as well be asked for higher genus, and Faber did
this, proving the statement for M3 and M4 (see eg. [Fab90a, Intermezzo]).

In honor of Faber and Fulton, the numerical equivalence classes of the irreducible
components of δ3g´4`npMg,nq are called F-Curves. One can ask the following question:

Question 2.1.1. (The F-Conjecture [GKM02]) Is every effective curve numerically equiv-
alent to an effective combination of F-Curves? Otherwise said, can one say that a divisor is
nef, if and only if it nonnegatively intersects all the F-Curves?

In [GKM02], we showed that in fact a positive solution to this question for Sg-
invariant nef divisors on M0,g`n would give a positive answer for divisors on Mg,n. In
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particular, the birational geometry of M0,g controls aspects of the birational geometry
of Mg. We know now that the answer to this question is true on M0,n for n ď 7 [KM13],
and on Mg for g ď 24 [Gib09].

2.2 The question of whether M0,n is a MDS

Another analogy between M0,n and toric varieties prompted Hu and Keel to ask
whether M0,n is a so-called Mori Dream Space. We now know, due to the very recent
work of Castravet and Tevelev, that this is not true in general. I’ll define a Mori
Dream Space and state the results of Castravet and Tevelev. To do so, we need first
the definition of a so-called small Q-factorial modification of X, defined as follows:

Definition 2.2.1. Let X be a normal projective variety. A small Q-factorial modification of
X is a birational map1 f : X Ñ Y that is an isomorphism in codimension one (ie. is small)
to a normal Q-factorial projective variety Y. We refer to f as an SQM for short.

Definition 2.2.2. A normal projective variety X is called an MDS if:

(a) X is Q-factorial and PicpXqQ – N1
pXqQ;

(b) NefpXq is generated by finitely many semi-ample line bundles;

(c) there is a finite collection of SQMs fi : X Ñ Xi such that each Xi satisfies p1q and p2q
and MovpXq is the union of f ˚i pNe f pXiqq.

Extremely well behaved schemes, like toric and log Fano varieties, where the min-
imal model program can be carried out without issue, were deemed “Mori Dream
Spaces” by Hu and Keel (MDS for short). The moduli space of stable n-pointed
genus zero curves M0,n is Fano for n ď 6, and so is a MDS in that range. While
not Fano for n ě 7, a comparison between the stratification of M0,n, given by curves
according to topological type, to the stratification of a toric variety given by its torus
invariant sub-loci, prompted Hu and Keel to ask whether M0,n is a MDS for all n.
This question has resulted in a great deal of work in the literature both about M0,n

and related spaces. As Castravet and Tevelev point out in their paper, for about
15 years now, many researchers have tried to understand this particular problem.
Other related questions go back to the work of Mumford.

1In particular, this map f need not be regular.
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Castravet and Tevelev in [CT15], prove that M0,n is not a MDS as long as n is at least
134. The authors assert that rather than compare M0,n to a toric variety, one should
rather think of it as the blow up of a toric variety – namely, the blow up of the Losev
Manin space LMn at the identity of the torus. Using their work, in [GK16], González
and Karu showed M0,n is not an MDS as long as n is at least 13. A very recent
preprint of Hausen, Keicher, and Laface [HKL16] studies the blow-up of a weighted
projective plane at a general point, giving criteria and algorithms for testing if the
result is a Mori dream space. As an application, using the framework of Castravet
and Tevelev, they show that M0,n is not an MDS as long as n ě 10. The three cases 7,
8, and 9 therefore seem to remain open, as far as I know.

2.2.1 What comes out of these questions?

In Castravet and Tevelev’s proof that M0,n is not a MDS, they ultimately show that
the third criterion of the definition for a MDS (see Definition 2.2.2) fails. If the
second condition in the definition for a MDS, the prediction is that the Nef cone of
M0,n should have a finite number of extremal rays, and that every nef divisor should
be semi-ample. Moreover, if in the increasingly unlikely event that the F-Conjecture
were to hold for M0,n, then the Nef cone would have finitely many extremal rays.
Therefore, it makes sense to ask:

Question 2.2.3. (a) Is Nef1
pM0,nq polyhedral?

(b) Is every element of Nef1
pM0,nq semi-ample?

It would be interesting to see that the answer to part pbq is yes, but that there are so
many nef divisors that the answer to part paq is no. This leads me to want to tell you
about a class of very many globally generated vector bundles on M0,n. In particular,
their first Chern classes are all base point free elements of the nef cone, spanning a
full dimensional subcone of semi-ample divisors in Nef1

pM0,nq.

2.3 Vector bundles of conformal blocks

The stack Mg,n, parametrizing flat families of stable n-pointed curves of genus g,
carries vector bundles V, constructed using representation theory [TUY89]. Over
(closed) points pC, ~pq PMg,n, fibers ofV are dual to vector spaces of conformal blocks,
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basic objects in rational conformal field theory. When g “ 0, the bundles are globally
generated, and (products of) higher Chern classes of these bundles are elements in
the pliant cone on the moduli space M0,n.

These are combinatorial in many ways, for example, in type A their ranks can be
computed using Schubert calculus. Namely, the cohomological version of Witten’s
Dictionary, stated below, which follows from [Wit95] and the twisting procedure of
[Bel08, Eq (3.10) ].

Theorem 2.3.1. Let V “ Vpslr`1, ~λ, `q be a vector bundle onMg,n such that
řn

i“1 |λi| “

pr` 1qp` ` sq for some integer s.

(a) If s ą 0, then let λ “ `ω1. The rank of V is the coefficient of qsσ`ωr`1 in the quantum
product

σλ1 ‹ σλ2 ‹ ¨ ¨ ¨ ‹ σλn ‹ σ
s
λ P QH˚

pGrpr` 1, r` 1` `qq.

(b) If s ď 0, then the rank of V is the multiplicity of the class of a point σkωr`1 in the product

σλ1 ¨ σλ2 ¨ ¨ ¨ ¨ ¨ σλn P H˚
pGrpr` 1, r` 1` kqq,

where k “ ` ` s.

Examples of rank computations using Theorem 2.3.1 can be found in [BGM15,
BGM16, Kaz16, Hob16] and [BGK15].

2.3.1 Construction of fibers

I follow [TUY89, Uen08, Bea96] and [Fak12] pretty closely in my notation and defi-
nitions.

Given a simple Lie algebra g, a positive integer `, and an n-tuple ~λ “ pλ1, . . . , λnq of
elements λi P P`pgq, one can define a vector bundle of conformal blocks Vpg, ~λ, `q.

Finite dimensional situation:

Recall that to λi there corresponds a unique finite dimensional g-module Vλi . Set
V~λ “ Vλ1 b ¨ ¨ ¨Vλn and define an action

gˆ V~λ Ñ V~λ pg, v1 b ¨ ¨ ¨ vnq ÞÑ

n
ÿ

i“1

v1 b ¨ ¨ ¨ vi´1 b pg ¨ viq b vi`1 b ¨ ¨ ¨ vn.
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We write rV~λsg for the space of coinvariants of V~λ: The largest quotient of V~λ on
which g acts trivially. That is, the quotient of V~λ by the subspace spanned by the
vectors X ¨v where X P g and v P V~λ.

Let V and W be two a-modules. The space of coinvariants rVbWsg is equal to the
quotient of VbW by the subspace spanned by the elements of the form

X vb w` vb X w,

where X P g, v P V, and w P W.

Infinite dimensional analogues:

Given a stable n-pointed curve pC, ~pq, to construct the fiber Vpg, ~λ, `q|pC,~p we will use
two new Lie algebras:

First, for each i P t1, . . .uwe will use

ĝi “ gb Cppξiqq ‘ C ¨ c,

where by Cppξiqq, we mean the field of Laurant power series over C in the variable
ξi, and c is in the center of ĝi. To define the bracket, we note that elements in ĝi

are tuples pai, αcq, with ai “
ř

j Xi jb fi j, with fi j P Cppξiqq. We define the bracket on
simple tensors:

rpXb f , αcq, pYb g, βcqs “ prX,Ys b f g, cpX,Yq ¨ Resξi“0pgpξiqd f pξiqqq.

Checking ĝi is a Lie algebra done in Section 3.4, where we also outline the construction
of the infinite dimensional analogue Hλi of Vλi : It turns out that Hλi is a unique ĝi-
module, although infinite dimensional.

Now for the second Lie algebra:

Let U “ C ztp1, . . . , pnu. Without loss of generality, we can assume that U is affine
since we can always add marked points with trivial weights (this is nontrivial). By
gpUqwe mean the Lie algebra gb OCpUq.

Choose a local coordinate ξi at each point pi, and denote by fpi the Laurant expansion
of any element f P OCpUq. Then for each i, we get a ring homomorphism

OCpUq Ñ Cppξiqq, f ÞÑ fpi ,

21



and hence for each i, we obtain a map (this is not a Lie algebra embedding)

gpUq Ñ ĝi Xb f ÞÑ pXb fpi , 0q.

Set H~λ “ Hλ1 b ¨ ¨ ¨Hλn and define the following, which we will show is an action:

(2.1) gpUq ˆH~λ Ñ H~λ pg,w1 b ¨ ¨ ¨wnq ÞÑ

n
ÿ

i“1

w1 b ¨ ¨ ¨wi´1 b pg ¨ wiq b wi`1 b ¨ ¨ ¨wn.

Claim 2.3.2. Equation 2.1 defines an action of gpUq on H~λ.

Proof. Given Xb f , and Yb g P gpUq, and a simple tensor v “ v1 b ¨ ¨ ¨ b vn P H~λ, we
want to check that

rX b f ,Y b gs ¨ v “ pX b f q ¨
`

pY b gq ¨ v
˘

´ pY b gq ¨
`

pX b f q ¨ v
˘

.

The right hand side simplifies as follows:

(2.2) pX b f q ¨
`

pY b gq ¨ v
˘

´ pY b gq ¨
`

pX b f q ¨ v
˘

“ pX b f q ¨
´

n
ÿ

i“1

v1 b ¨ ¨ ¨ b vi´1 b pY b gpiq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

´ pY b gq ¨
´

n
ÿ

i“1

v1 b ¨ ¨ ¨ b vi´1 b pX b fpiq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

“

´

ÿ

1ďiďn
1ď jďn

v1b ¨ ¨ ¨ v j´1bpXb fp jq ¨ v jb v j`1b ¨ ¨ ¨ b vi´1bpYb gpiq ¨ vib vi`1b ¨ ¨ ¨ b vn

¯

´

´

ÿ

1ďiďn
1ď jďn

v1b ¨ ¨ ¨ v j´1b pYb gp jq ¨ v jb v j`1b ¨ ¨ ¨ b vi´1b pXb fpiq ¨ vib vi`1b ¨ ¨ ¨ b vn

¯

“

´

ÿ

1ďiďn

v1 b ¨ ¨ ¨ v j´1 b ¨ ¨ ¨ b vi´1 b pX b fpiq ¨
`

pY b gpiq ¨ vi
˘

b vi`1 b ¨ ¨ ¨ b vn

¯

´

´

ÿ

1ďiďn

v1 b ¨ ¨ ¨ v j´1 b ¨ ¨ ¨ b vi´1 b pY b gpiq ¨
`

pX b fpiq ¨ vi
˘

b vi`1 b ¨ ¨ ¨ b vn

¯

“

´

ÿ

1ďiďn

v1 b ¨ ¨ ¨ v j´1 b ¨ ¨ ¨ b vi´1 b
`

rX,Ys ` p f gqpi

˘

¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯
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The left hand side simplifies as follows:

(2.3)
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b

´

rX,Ys b fpi gpi ` pX,YqResξi“0 gpid fpic
¯

¨ vi b vi`1 b ¨ ¨ ¨ b vn

“
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b

´

rX,Ys b fpi gpi

¯

¨ vi b vi`1 b ¨ ¨ ¨ b vn

`
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b

´

pX,YqResξi“0 gpid fpic
¯

¨ vi b vi`1 b ¨ ¨ ¨ b vn.

Now, by definition, c ¨ vi “ ` ¨ vi for all i, and so we can rewrite the second summand
as follows

(2.4)
ÿ

1ďiďn

v1 b ¨ ¨ ¨ b vi´1 b ppX,YqResξi“0 gpid fpicq ¨ vi b vi`1 b ¨ ¨ ¨ b vn

“
ÿ

1ďiďn

pX,YqResξi“0 gpid fpi

´

v1 b ¨ ¨ ¨ b vi´1 b c ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

“
ÿ

1ďiďn

pX,YqResξi“0 gpid fpi

´

v1 b ¨ ¨ ¨ b vi´1 b ` ¨ vi b vi`1 b ¨ ¨ ¨ b vn

¯

“
`

`
ÿ

1ďiďn

pX,YqResξi“0 gpid fpi

˘

´

v1 b ¨ ¨ ¨ b vn

¯

.

Since
ř

1ďiďnpX,YqResξi“0 gpid fpi “ 0, this contribution is zero. Therefore the left and
right hand sides of the expressions are the same, and we have checked that gpUq acts
on H~λ as claimed. �

We now set
Vpg, ~λ, `q|pC,~pq “ rH~λsgpUq.

2.3.2 Vanishing, identities and the problem of nonvanishing

Critical level vanishing and identities

The critical level, first defined by Fakhrudin [?Fakh] for sl2, is defined only for
g “ slr`1, while a similar concept called the theta level is defined for general Lie
algebras g [BGM15, BGM16]. As I will explain, the Chern classes of bundles are
trivial if ` is above the critical level. In terms of first Chern classes, it seems that
very many conformal blocks divisors are extremal in the nef cone, and the number

23



of curves they contract increases as the level increases with respect to the pair pg, ~λq.
Moreover, sets of nontrivial classes where the Lie algebra and the weights are fixed
but the level varies, have been shown to have interesting properties. For example
on M0,n, where n “ 2pg` 1q is even tc1pVpsl2, ωn

1 , `qq : 1 ď ` ď g “ clppsl2, ωn
1qu, forms

a basis of PicpM0,nq
Sn [?ags].

Definition 2.3.3. If r` 1 divides
řn

i“1 |λi|, we refer to

clpslr`1, ~λq “ ´1`
řn

i“1 |λi|

r` 1
,

as the critical level for the pair pslr`1, ~λq. If ` “ clpslr`1, ~λq, and if ~λ P P`pslr`1q
n, then

Vpslr`1, ~λ, `q is called a critical level bundle, and c1pVpslr`1, ~λ, `qq “ Dpslr`1, ~λ, `q is called
a critical level divisor.

Note that if ` “ clpslr`1, ~λq, then r “ clpsl``1, ~λTq, where ~λT “ pλT
1 , . . . , λ

T
nq. Here λT

i

is the weight associated to the transpose of the Young diagram associated to the
weight λi. In particular, |λi| “ |λT

i |, and so

n
ÿ

i“1

|λi| “ pr` 1qp` ` 1q “ p` ` 1qpr` 1q “
n
ÿ

i“1

|λT
i |.

In particular, critical level bundles come in pairs:

The following theorem was first proved by Fakhruddin for sl2 in [?Fakh]:

Theorem 2.3.4. [?Fakh, BGM15] If ` “ clpslr`1, ~λq, then

(a) ckpVpslr`1, ~λ, ` ` cqq “ 0, for c ě 1; and

(b) c1pVpslr`1, ~λ, `qq “ c1pVpsl``1, ~λT, rqq.

Examples

(a) The bundle Vpslr`1, ωn
1 , `q is at the critical level for n “ pr`1qp``1q. In [BGM15]

we showed that the first Chern classes are all nonzero, and by Theorem 2.3.4,
for n “ pr` 1qp` ` 1q,

c1pVpslr`1, ω
n
1 , `qq “ c1pVpsl``1, ω

n
1 , rqq; and

c1pVpslr`1, ω
n
1 , ` ` cqq “ c1pVpsl``1, ω

n
1 , r` cqq “ 0 for all c ě 1.
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Figure 2.1:

Nef1
pM0,8q

S8 Ă Eff
1
pM0,8q

S8

(b) The bundle Vpsl4, tω1, p2ω1 ` ω3q
3u, 3q is at the critical level, and its first Chern

class is self dual.

Remark 2.3.5. The main applications of vanishing above the critical level are extremality
tests, and criteria for showing that maps given by conformal blocks divisors factor through
contraction maps to Hassett spaces.

The problem of nonvanishing

The bundle Vpsl4, tω2 ` ω3, ω1, ω1 ` 2ω2, 2ω1 ` ω3u, 3q is at the critical level, (and
it is below the theta level (which is 3.5)). The rank of Vsl4,tω1,p2ω1`ω3q3u,3 on M0,4 is
one, while the dimension of the vector space of coinvariants Asl4,tω1,p2ω1`ω3q3u is 2. A
calculation shows that Dsl4,tω1,p2ω1`ω3q3u,3 “ 0.

Examples like this have led us in [BGM16] to ask when divisors are nonzero.

Question 2.3.6. What are necessary and sufficient conditions for a triple pg, ~λ, `q that
guarantee that the associated conformal blocks divisor D

g,~λ,` is nonzero?
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2.4 Cones of cycles of higher codimension

2.4.1 The Pliant cone of Lehmann and Fulger

As discussed earlier, the pseudo-effective cone EffmpXq is the closure of the cone
generated by classes of m-dimensional subvarieties on a projective variety X. If X is
smooth, then one can define higher codimension analogues of cones of nef divisors
by taking Nefm

pXq to be dual to EffmpXq. Many properties held by these cones when
m “ 1 fail more generally [Pet09, Voi10, DELV10, FL14]. To more accurately capture
the properties of cones of nef divisors, Fulger and Lehmann have introduced three
sub-cones: the Pliant cone, the base-point free cone, and the universally pseudoef-
fective cone. The smallest of these; the Pliant cone Plm

pXq Ă Nefm
pXq is the closure

of the cone generated by monomials in Schur classes of globally generated vector
bundles on X.

2.4.2 A subcone of Plm
pM0,nq from Vector bundles of conformal

blocks

Claim 2.4.1. There is a spanning set for Am
pM0,nq, given by a basis of first Chern classes of

vector bundles of conformal blocks. In particular, all classes lie in the pliant cone.

Proof. By [Kee92], A1pM0,n´1q generates AkpM0,n´1q, all k.

There is at least one basis we may use for the Picard group of M0,n. Namely, the
bundles B that generate Fakhruddin’s basis for PicpM0,nq, are

B “ tVpslp2q, ~λ, 1q : rkpVpslp2q, ~λ, 1q ‰ 0u.

In B bundles are determined by n-tuples of weights of the form ~λ “ pλ1, . . . , λnq,
where λi P t0, ω1u, 0 ‰

ř

i |λi| is divisible by 2 and such that at least four weights λi

are different than zero. Moreover, all have level one, and so also have rank one. We
note that if n is odd, then all elements of B are pulled back from M0,n´1 and if n is
even, then Vpslp2q, tωn

1u, 1q is the unique element of B that is not pulled back from
M0,n´1.

�
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Remark 2.4.2. Swinarski showed that Fakhruddin’s basis does not cover the whole nef cone
of M0,6, and so it isn’t likely that these could be used to show that the cones spanned by
conformal blocks classes and nef cones are the same for k ą 1.
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Lecture 3

Appendices

3.1 What is a moduli space, technically speaking?

3.1.1 The functor of points

Definition 3.1.1. Let X be a scheme over a field k. The functor of points of a scheme X is
the contravariant functor

hX : pSchkq Ñ pSetsq,

from the category pSchkq of schemes over k to the category pSetsq of sets which takes a scheme
Y P ObpSchkq to the set hXpYq “MorSchkpY,Xq, and takes maps of schemes f : Y Ñ Z, to
maps of sets:

hXp f q : hXpZq Ñ hXpYq, rg : Z Ñ Xs ÞÑ rg ˝ f : Y Ñ Xs.

Definition 3.1.2. We say that a contravariant functor

F : pSchkq Ñ pSetsq,

is representable if it is of the form hX for some scheme X. By Yoneda’s Lemma (below), if X
exists, then it is unique, and we say that X represents the functor F.

For a proof of Yoneda’s Lemma, which we next state, see for example [EH00, pages
252-253]

Lemma 3.1.3 (Yoneda). Let C be a category and X, and let X1 P ObjpCq.
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(a) If F is any contravariant functor from C to the category of sets, the natural trans-
formations from Morp,Xq to F are in natural correspondence with the elements of
FpXq;

(b) If functorsMorp,Xq andMorp,X1q are isomorphic, then X – X1.

3.1.2 Fine moduli spaces

See also [Kol96, Chapter 1], [EH00, Chapter VI, page ], Kleiman’s article on the
Picard Scheme in [FGI`05], and [HM98].

Definition 3.1.4. Given a reasonable1 collection of objects S, we define a (contravariant)
moduli functor from the category pSchkq of schemes over k to the category pSetsq of sets

FS : pSchkq Ñ pSetsq, T ÞÑ FSpTq,

where FSpTq is equal to the set of flat families of objects in S parametrized by T up to
isomorphism over T.

The question one then asks is whether there is a scheme which we can call ModS, or
better said, a flat morphism of schemes:

u :US Ñ ModS,

which is a fine moduli space for the moduli functor. This means that for every object
T P ObjpSchkq, pulling back, gives an equivalence of sets:

FSpTq “MorSchpT,ModSq.

For example, taking T “ ModS, we obtain the universal family u : US Ñ ModS
which corresponds to the identity element id P MorSchpModS,ModSq. And taking
T “ Specpkq, we see that the set of k-points of ModS corresponds to the fibers of the
family u :US Ñ ModS.

Another more formal way to say this is the following.

Definition 3.1.5. The functor FS from Definition 3.1.4 is represented by the scheme ModS
if there is a natural isomorphism between FS and the functor of pointsMorSchp ,ModSq.
In this case we say ModS is a fine moduli space for the functor FS.

1As part of being a reasonable collection of objects, we require that S is closed under base extension. So
for example, if objects X in S are defined over Specpkq, where k is a field, and if k ãÑ k is a field extension,
then Xk “ XˆSpecpkq Specpkq is also in S.
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3.1.3 Example: The Grassmannian

Let S be a scheme of finite type over a field k, and let pSchSq denote the category
of schemes of finite type over S. Fix two integers 0 ă d ă r. We will consider the
contravariant functor from pSchSq to the category pSetsq of sets:

g
r,d
S : pSchSq Ñ pSetsq, T ÞÑ gr,d

S pTq,

such that

g
r,d
S pTq “ t q : Or

T � F : F a coherent locally free OT -module of rank d u{ „,

where two quotients q1 : Or
T � F1 and q2 : Or

T � F2 in gr,d
S pTq are equivalent if there

is an isomorphism f : F1 Ñ F2, making the diagram

F1
f // F1

O
r
T

q1

``

q2

OO

commute. Grothendieck proved that there is a projective scheme Gr,d
S of finite type

over S (ie an object in pSchSq) that represents the functor gr,d
S .

One can generalize the Grassmannian, forming Hilbert schemes, and Quot schemes
for example.

3.1.4 Example: Hilbert schemes

If X is a projective scheme of finite type over S, we can consider the contravariant
functor

hX { S : pSchSq Ñ pSetsq, T ÞÑ hX { SpTq,

and for XT “ XˆS T, one has hX { SpTq “ tq : OXT � F : F satisfying p1q and p2qu{ „.

(a) is a coherent sheaf of OT-modules; and

(b) is flat and with compact support with respect to the projection p2 : XˆS T Ñ T.

Notice here that r “ 1, and as OXT is the ring of regular functions for XT “ XˆS T, by
taking kernels of the maps q : OXT � F , we get that the set hX { SpTq is in bijection with
the set of closed subschemes of X parametrized by T. Grothendieck showed this
functor is representable by the Hilbert scheme HilbX { S, which while not of finite type
over S, is a union of schemes of finite type, parametrized by Hilbert polynomials,
each of which represents a moduli functor. We’ll speak more about these.
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3.1.5 Example: Quot schemes

A common generalization of the previous two examples are the following two con-
travariant functors.

QOr
X{X { S : pSchSq Ñ pSetsq, T ÞÑ QOr

X{X { SpTq,

such that, for XT “ XˆS T, the set QOr
X{X { SpTq is equal to

tq : Or
XT
� F : F coherent OXT-module, flat with compact support over Tu{ „ .

More generally, if E is a locally free sheaf on X, we define a contravariant functor

QE{X { S : pSchSq Ñ pSetsq, T ÞÑ QE{X { SpTq,

where for p1 : XT “ XˆS T Ñ X the projection onto the first factor, the set QE{X { SpTq
is

tq : p˚1E� F : F coherent OXT-module, flat with compact support over Tu{ „ .

Grothendieck proved thatQE{X { S is represented by the so-called Quot-scheme QuotE{X { S,
which while not finite type over S, again is a union of schemes of finite type over S,
parametrized by Hilbert polynomials.

3.1.6 Not an example: the moduli space of smooth curves

Consider, for g “ dim H1
pC,Oq ě 2:

Mg : pSchkq Ñ pSetsq, T ÞÑMgpTq,

where MgpTq is the set of proper flat maps π : F Ñ T such that every fiber Ft is
a smooth projective curve of genus g modulo isomorphism over T. This functor is
not represented by a fine moduli space: every curve with nontrivial automorphisms
creates issues.

Example 3.1.6. We will consider a nontrivial family of hyperelliptic curves parametrized
by Gm “ A1zt0u. To describe this family, let X “ Zpy2 ´ f pxqq be any smooth hyperelliptic
curve of genus g with AutpXq – C2 “ă τ ą. The cyclic group C2 acts on X and on Gm:

C2ˆX Ñ X, pτ, px, yqq ÞÑ px,´yq, and C2ˆGm Ñ Gm, pτ, zq ÞÑ ´z;
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and we can form the contracted product

F “ Gm ˆC2 X “ pGm ˆ Xq{ „, where pτ ¨ α, pq „ pα, τ ¨ pq.

We’ll set
π : F Ñ Gm rpα, pqs ÞÑ α2,

which is well defined since by this prescription pτ ¨α, pq “ p´α, pq ÞÑ α2, and pα, τ ¨pq ÞÑ α2.
To see that fibers of π are isomorphic to X, notice that one can view the set of points lying
over α2 P Gm as all points lying on two copies of X that are identified by the equivalence
relation „. In particular if the functorMg were represented by a fine moduli space Mg with
a universal family u : Ug Ñ Mg, then there would be a constant map

µπ : Gm Ñ Mg, α ÞÑ rXs,

and so F would be equal to the constant family, giving a commutative diagram

F
F //

π
##

Gm ˆ X
p1

��
Gm.

But the map F : F Ñ Gm ˆ X could simply not be well defined, for all points rpα, pqs P F ,
and so this is impossible.

However, there is a scheme Mg with the following properties:

(a) for an algebraically closed field k, the k-points of Mg are in one to one corre-
spondence with the set of isomorphism classes of smooth curves of genus g
defined over k;

(b) if π : F Ñ T is a flat family of curves of genus g, then there is a map µπ : T Ñ
Mg such that if t P T is a geometric point, then µπptq is the point rFts in Mg

corresponding to the isomorphism class of the fiber Ft “ π´1ptq.

3.1.7 Coarse moduli spaces

Definition 3.1.7. We say that a scheme ModS is a coarse moduli space for the functor
FS (from Definition 3.1.4), if

(a) there is a natural transformation of functors FS ÑMorSchp ,ModSq;
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(b) the scheme ModS is universal for p1q;

(c) for any algebraically closed field extension k ãÑ K,

FSpKq –MorSchpSpecpKq,ModSq “ ModSpKq,

is an isomorphism of sets.

In particular, the scheme Mg is a coarse moduli space for the functorMg described
in Section 3.1.6.

Definition 3.1.8. For g “ dim H1
pC,OCq ě 2, consider the contravariant functor:

Mg : pSchkq Ñ pSetsq, T ÞÑMgpTq,

whereMgpTq is the set of flat proper morphisms π : F Ñ T such that every fiber Ft is a
stable curve of genus g modulo isomorphism over T.

Theorem 3.1.9. [DM69] There exists a coarse moduli space Mg for the moduli functorMg;
Moreover, Mg is a projective variety that contains Mg as a dense open subset.

Remark 3.1.10. Let T be any smooth curve and p P T a (geometric) point on T. Suppose
there is a regular map

µ˚ : T˚ “ T ztpu Ñ Mg.

By definition of coarse moduli space, this map corresponds to a family π : X Ñ T˚ of stable
curves of genus g, parametrized by T˚. Now by Theorem 3.1.9, the moduli space Mg is
proper, and so by the valuative criterion for properness, there is an extension of µ˚ giving a
morphism µ : T Ñ Mg. But by Theorem 3.1.9, Mg is also separated, and one can use this
to show this extension µ is unique. So this says that there is a unique extension to a family
π : X Ñ T parametrized by T. This is the content of the stable reduction theorem.

3.2 Generalizations based on the combinatorial struc-
ture of the boundary

3.2.1 Tropical curves and moduli of tropical curves

A tropical curve is a metric weighted graph: A pair G “ pΓ, ` : EpΓq Ñ Rą0 Y t8uq

consisting of a weighted graph and a length function assigned to each edge. Fixing a
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weighted graph Γ, the tropical curves having graph isomorphic to Γ are determined
by the lengths of their edges. One can define:

M
Trop
Γ :“ pRą0 Y t8uq

|EpΓq|
{AutpΓq,

and show that these glue together to form a moduli space:

M
Trop
g “ YgpΓq“gM

Trop
Γ ,

that Sam will talk about Moduli of tropical curves and the relationship between
moduli of curves and moduli of tropical curves [Abr13] describing [ACP15]: [BPR16,
Tyo12, Viv13, ACP15, Ber90, Thu07, KKMSD73]

3.3 How can studying Mg tell us about curves?

We started by considering a family of curves parametrized by an open subset of A6,
that included the general smooth curve of genus 2.

Generally speaking, if there is a family of curves parametrized by an open subset of
AN`1 that includes the general curve of genus g, then one would have a dominant
rational map from PN to our compactification Mg. In other words, Mg would be
unirational. This would imply that there are no pluricanonical forms on Mg. Said
otherwise still, the canonical divisor of Mg would not be effective.

On the other hand, one of the most important results about the moduli space of
curves, proved almost 40 years ago, is that for g ąą 0 the canonical divisor of Mg

lives in the interior of the cone of effective divisors (for g “ 22 and g ě 24, by
[EH87, HM82], and for by g “ 23 [Far00]). Once the hard work was done to write
down the classes of the canonical divisor, and an effective divisor called the Brill-
Noether locus, to prove this famous result, a very easy combinatorial argument can
be made to show that the canonical divisor is equal to an effective linear combination
of the Brill-Noether and boundary divisors when the genus is large enough.

The upshot is that by shifting focus to the geometry of the moduli space of curves,
we learn something basic and valuable about the existence of equations of smooth
general curves. Moreover, for these values of g for which Mg is known to be of
general type, one can consider the canonical ring

R‚ “
à

mě0
ΓpMg,m KMg

q,
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which is now known to be finitely generated by the celebrated work of [BCHM10].
In particular, the canonical model ProjpR‚q, is birational to Mg.

It is still an open problem to construct this model, and efforts to achieve this goal
have both furthered our understanding of the birational geometry of the moduli
space of curves, as well as giving a highly nontrivial example where this developing
theory can be experimented with and better understood.

3.3.1 Chow rings for general proper varieties using Chern classes
of vector bundles

Definition 3.3.1. Let AkpXq be the group of algebraic cycles of dimension k on X.

In his book on Intersection theory, Fulton defines a Chern class as a linear operator:

Definition 3.3.2. Let X be a proper variety, and E a vector bundle on X. The r-th Chern
class of E is a linear operator

crpEq : AkpXq Ñ Ak´rpXq.

Definition 3.3.3. Two cycles Z1 and Z2 on X are numerically equivalent if for every weight
k monomial p in Chern classes of vector bundles, one has

degpP ¨ Z1q “ degpP ¨ Z2q.

This defines a pairing between weight k-Chern classes and cycles of dimension k.

Definition 3.3.4. NkpXqZ “ AkpXq{ numerical equivalence .

Definition 3.3.5. The finitely generated Abelian group NkpXqZ is a lattice in the vector
space NkpXq “ NkpXqZ b R.

Definition 3.3.6. The pseudo effective cone EffkpXq Ă NkpXq is defined to be the closure of
the cone generated by cycles with nonnegative coefficients.

The cone EffkpXq is full dimensional, spanning the vector space NkpXq. It is pointed
(containing no lines), closed, and convex.

Definition 3.3.7. Its dual of the vector space NkpXq is:

Nk
pXq “ tR polynomials in weight k-Chern classes u{ ”,

where equivalence ” is given by intersection with cycles.
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Definition 3.3.8. The Nef Cone Nefk
pXq Ă Nk

pXq is the cone dual to EffkpXq.

As the dual of EffkpXq, the nef cone has all of the nice properties that EffkpXq does.

Example 3.3.9. By the definition given above, N1
pXq “ t first Chern classes u{ ”, where

” is defined by intersection with 1-cycles. This is the same as what you are used to seeing
because if E is any vector bundle, then c1pEq “ c1pdetpEqq, and detpEq is a line bundle.

3.4 Just enough about affine Lie algebras

3.4.1 ĝ “
`

gb kppξqq
˘

‘ C ¨ c

Let g be a Lie algebra with bracket r , s. In this section we will define and study the
affine Lie algebra

ĝ “
`

gb Cppξqq
˘

‘ C ¨ c,

where Cppξqq is the field of Laurant power series over C in 1 variable, and c P g is in
the center of ĝ. To define the bracket for ĝ, we set

rXb f pξq,Yb gpξqs “ rX,Ys b f pξqgpξq ` pX,Yq ¨ Respgpξqd f pξqq ¨ c,

where X, Y P g.

Typical elements in ĝ are of the form
řn

i“1 Xib fipξq ‘ λc, and
řn

j“1 Y jbg jpξq ‘ µc, so
using that rc, ˝s “ r˝, cs “ 0, for all ˝ P ĝ, since c is central in ĝ:

(3.1) r

n
ÿ

i“1

Xib fipξq ‘ λc,
n
ÿ

j“1

Y jbg jpξq ‘ µcs

“ r

n
ÿ

i“1

Xib fipξq,
n
ÿ

j“1

Y jbg jpξqs “
ÿ

i j

rXib fipξq,Y jbg jpξqs.

So the upshot is that we really only need to know that the given definition for
rXb f pξq,Ybgpξqs makes sense and is well defined. That is, we need to check
anti-symmetry and the Jacobi identity.

Claim 3.4.1. The proposed Lie bracket for ĝ satisfies the Jacobi identity:

(3.2) rrXb f pξq,Ybgpξqs,Zbhpξqs

“ rXb f pξq, rYbgpξq,Zbhpξqss ´ rYbgpξq, rXb f pξq,Zbhpξqss.
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Proof. Using a bit of shorthand, we drop the variable ξ writing g f 1 instead of
Respgpξqd f pξqq, we can express the left hand side of the equation as:

(3.3) rrX,Ys b f g‘
`

pX,Yqg f 1q
˘

c,Zbhs “ A`B,

where
A “ rrX,Ys,Zs b f gh, and B “

`

rX,Ys,Z
˘

hp f gq1c.

The right hand side of the equation can be written as:

(3.4) rXb f , rY,Zs b gh` pY,Zqg1h ¨ cs ´ rYbg, rX,Zs b f h` px,Zqh f 1cs

“ rX, rY,Zss b f gh‘ pX, rY,Zsq ¨ gh f 1 ¨ c

a rY, rX,Zss b g f h‘ pY, rX,Zsq ¨ f hg1 ¨ c “ A1
`B1,

where

A1
“ rX, rY,Zss b f gh, and B1 “

´

`

X, rY,Zs
˘

gh f 1 ´
`

Y, rX,Zs
˘

f hg1
¯

c.

One has that A “ A1 by the Jacobi identity for the Lie bracket for g, and so it remains
to check that B “ B1. Using the following three identities:

(a) the product rule: p f gq1 “ f 1g` f g1;

(b)
`

rX,Ys,Z
˘

“
`

X, rY,Zs
˘

(Lemma 3.4.2); and

(c)
`

rX,Ys,Z
˘

“ ´
`

Y, rX,Zs
˘

(Lemma 3.4.3),

we write

(3.5) B “
`

rX,Ys,Z
˘

hp f gq1c

“
`

rX,Ys,Z
˘

h f 1gc`
`

rX,Ys,Z
˘

h f g1c

“
`

X, rY,Zs
˘

h f 1gc´
`

Y, rX,Zs
˘

h f g1c “ B1 .

�

The following identity is referred to as the Frobeneous property of the Killing form.

Lemma 3.4.2.
`

rX,Ys,Z
˘

“
`

X, rY,Zs
˘
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Proof. By definition of the Killing form, and using that Trace is invariant under cyclic
permutations (so Tracepabcq “ Tracepcabq), we write:

(3.6)
`

X, rY,Zs
˘

“ Trace
`

adpXq adpYq adpZq
˘

´ Trace
`

adpXq adpZq adpYq
˘

“ Trace
`

adpXq adpYq adpZq
˘

´ Trace
`

adpYq adpXq adpZq
˘

Trace
`

padpXq adpYq ´ adpYq adpXq adpZq
˘

“
`

rX,Ys,Z
˘

.

�

Lemma 3.4.3.
`

rX,Ys,Z
˘

“ ´
`

Y, rX,Zs
˘

Proof. For the left hand side of the equation, using the symmetry of the Killing form:

`

rX,Ys,Z
˘

“
`

Z, rX,Ys
˘

.

For the right hand side, using that the Lie bracket is antisymmetric, while the Killing
form is symmetric, we write:

´
`

Y, rX,Zs
˘

“
`

Y, rZ,Xs
˘

“
`

rZ,Xs,Y
˘

.

Now these are the same by Lemma 3.4.2:

`

rZ,Xs,Y
˘

“
`

Z, rX,Ys
˘

.

�

Claim 3.4.4. rXb f pξq,Xb f pξqs “ 0

Proof. Using that rX,Xs “ 0 since g is a Lie algebra, and it’s Lie bracket is of course
anti-symmetric, and moreover, since d

dξ
1
2 f 2 “ f pξq f 1pξqdξ. So

Resξ“0
` d

dξ
1
2

f 2
˘

“ Resξ“0
`

f pξq f 1pξqdξ
˘

“ 0.

We can then write

rXb f pξq,Xb f pξqs “
`

rX,Xs b f pξq ¨ f pξq
˘

‘ px, xqResξ“0
`

f pξq f 1pξqdξ
˘

“ 0.

�
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The universal enveloping algebra

From any associative algebra A one can build a Lie algebra LpAq by taking the
Lie bracket to be the commutator. Given a Lie algebra, we can also construct an
associative algebra called the universal enveloping algebra – it has many of the
features of the Lie algebra we start with but is in some sense easier to work with,
and allows us to construct our vector bundle.

Definition 3.4.5. For any (possibly infinite dimensional) Lie algebra g, the universal
enveloping algebra of g is defined to be any pair pU, iq where U is an associative algebra
with unity and i : g Ñ LpUq is a homomorphism of Lie algebras with the property that,
if A is any other associative algebra with unity and if φ : g Ñ LpAq is any Lie algebra
homomorphism, then there is a unique homomorphism of unital algebras ψ : U Ñ A, so that
the following diagram

g
i //

φ !!

LpUq

ψ˚
��

LpAq.

commutes. In the diagram, the map ψ˚ is equal to ψ, considered as a homomorphism of Lie
algebras.

The universal enveloping algebra pUpgq, iq is constructed from the tensor algebra
T pgq.

Definition 3.4.6. Given a vector space V over a field k, the tensor algebraT pVq is defined
to be the direct sum

T pVq “
8
à

k“0

Tk
pVq, where Tk

pVq “ Vbk
“ V b V b ¨ ¨ ¨ b V,

with multiplication determined by the canonical isomorphism

Tk
pVq

â

Tm
pVq Ñ Tk`m

pVq,

given by the tensor product and extended linearly to all of TpVq.

Definition 3.4.7. Let g be a Lie algebra. Then set Upgq equal to the quotient of T pgq by the
ideal generated by all elements of the form

XbY´YbX´rX,Ys,
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for all X and Y P g, and define

i : gÑ Upgq, X ÞÑ X .

Excercise 3.4.8. Check that the relations defining Upgq ensure that i : g Ñ Upgq is a
morphism of Lie algebras, and that pUpgq, iq is a universal enveloping algebra. Show that
the universal enveloping algebra pU, iq of g is unique up to isomorphism.

3.4.2 ĝmodules Mλ and Hλ

There is a bijection between the intersectionWXΛW of the Weyl chamberW and the
weight lattice ΛW and the set of irreducible representations for a given Lie algebra
g. Given λ PW X ΛW, there is a corresponding finite irreducible representation Vλ

for g. In particular, Vλ is a g-module.

We are going to use Vλ to construct a representation Mλ for ĝ.

To construct Mλ, we use the following:

ĝ` “ gb Crrξssξ, and ĝ´ “ gb Crrξ´1
ssξ´1,

which we regard as Lie subalgebras of ĝ. One can show that

ĝ “ ĝ` ‘ g‘ C ¨ c‘ ĝ´.

We’ll also use the ”positive” Lie sub-algebra

p̂` “ ĝ` ‘ g‘ C ¨ c,

along with the universal enveloping algebrasUpĝq andUpp̂`q.

Definition 3.4.9. Mλ :“Upĝq b Upp̂`q Vλ.

Remark 3.4.10. Definition 3.4.9 makes sense: taking such a tensor product is legal:

(a) If g1 is any subalgebra of a Lie algebra g2, then the inclusion g1 ãÑ g2 extends to a
monomorphism Upg1q ãÑ Upg2q. Furthermore Upg2q is a free Upg1q module. So in
particular, as p̂` ãÑ ĝ, we have thatUpĝq is a freeUpp̂`q module.
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(b) Vλ is a p̂`-module. To see that this is true, note that since Vλ is a g-representation,
there is a Lie algebra homomorphism

gÑ EndpVλq.

Since p̂` “ ĝ` ‘ g‘ C ¨ c, we can let ĝ` act by zero and C ¨ c act by taking

C ¨ c Ñ EndpVλq, αc ÞÑ rVλ Ñ Vλ, v ÞÑ pα`qvs,

where here ` is the level.

Claim 3.4.11. Mλ is a representation for ĝ

Proof. To show that there is a Lie algebra morphism

ĝÑ EndpMλq,

we may show there is a map of associative algebras

Upĝq Ñ EndpMλq.

But by construction,Upĝq acts on the left of Mλ, and so this is true. �

Definition 3.4.12. We set Hλ “ Mλ { Iλ.

Since Upĝq is isomorphic, as a Upĝ´q-module to Upĝ´q bC Upp`q:

(3.7) ĝ “ gb Cppξqq ‘ C ¨ c “ gb
`

Crrξ´1
ssξ´1

bC Crrξssξ
˘

‘ C ¨ c

– gb Crrξ´1
ssξ´1

bC gb Crrξssξ‘ C ¨ c – ĝ´ bC p̂`.

So we can rewrite the module Mλ as:

Mλ – Upĝq bUpp̂`q Vλ – Upĝ´q bC Upp̂`q bUpp̂`q Vλ – Upĝ´q bC Vλ .

In particular, elements in Mλ :“ Upĝq b Upp̂`q Vλ look like elements v P Vλ times all
the negative stuff in ĝ.

With the notation above, Mλ contains a unique (see eg [TUY89, Bea96]) maximal
proper submodule Iλ generated by an element

Jλ “ pXθbξ
´1
i q

`´pθ,λq`1
b vλ P Mλ, and Iλ “ Upĝ´qJλ,

where here θ is the longest root, Xθ P g is the corresponding coroot, and vλ is the
highest weight vector associated to λ. We set

Hλ “ Mλ { Iλ .

We see that Hλ is a pg b Cppξqq ‘ Ccq-module. The subspace of Hλ annihilated by
ĝ` is isomorphic as a g-module to Vλ. So we identify Vλ with this subspace of Hλ

annihilated by ĝ`.
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