A combinatorial problem about vector bundles of conformal blocks on $\overline{M}_{0,n}$

Angela Gibney

The University of Georgia

2016

The problem I discuss today came up in joint work with P. Belkale, and S. Mukhopadhyay. It can be stated more generally, but I'll focus today on the case of conformal blocks for \mathfrak{sl}_{r+1} .

The moduli space of curves

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

The moduli space of curves

 $\overline{M}_{0,n}$ is a smooth projective variety, whose points correspond to stable *n*-pointed rational curves.

A stable *n*-pointed rational curve (C, \vec{p}) is:

- A rational curve C that may have (at worst) simple nodal singularities;
- $\vec{p} = (p_1, \dots, p_n)$ are n smooth points on C; and

(日) (日) (日) (日) (日) (日) (日)

► The (n+1)-tuple (C, p) has finitely many automorphisms.

Vector bundles of conformal blocks

Vector bundles of conformal blocks

for
$$\mathfrak{sl}_{r+1}$$
 are given by:

(1)
$$\mathfrak{sl}_{r+1}$$

(2) a positive integer ℓ ;
(3) $\vec{\lambda} = (\lambda_1, \dots, \lambda_n)$, where $\lambda_i = \sum_{j=1}^r C_j \omega_j$,
 $c_j \ge 0$, $\forall j$, and $\sum_{j=1}^r c_j \le \ell$.

such that

$$(r+1)|\sum_{i=1}^n |\lambda_i|,$$

where $|\lambda_i| = \sum_{j=1}^r j \cdot c_j$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$$V(\mathfrak{sl}_4, \{\omega_1, 2\omega_1 + \omega_3, 2\omega_1 + \omega_3, 2\omega_1 + \omega_3\}, 3)$$

Weights correspond to Young diagrams:

$$\sum_{i=1}^{n} |\lambda_i| = 1 + 3 \cdot 5 = 16.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

For g = 0 the bundles are globally generated and so their first Chern classes, the conformal blocks divisors $c_1(\mathbb{V})$ are base point free, give morphisms.

Many symmetries and identities govern aspects of these bundles and divisors. Rank of the bundles plays a key role.

Goals are to

 Find order in the set of all conformal blocks divisors;

(日) (日) (日) (日) (日) (日) (日)

Understand their associated maps.

Example: Additive Identities

Theorem (BGM)

Given $\mathbb{V}(\mathfrak{sl}_{r+1}, \vec{\mu}, \ell)$, of rank 1, and $\mathbb{V}(\mathfrak{sl}_{r+1}, \vec{\nu}, m)$, such that $\mathsf{rk} \mathbb{V}(\mathfrak{sl}_{r+1}, \vec{\mu}, \ell) = \mathsf{rk} \mathbb{V}(\mathfrak{sl}_{r+1}, \vec{\mu} + \vec{\nu}, \ell + m) = R$,

$$\begin{split} & C_1(\mathbb{V}(\mathfrak{sl}_{r+1},\vec{\mu}+\vec{\nu},\ell+m)) \\ & = RC_1(\mathbb{V}(\mathfrak{sl}_{r+1},\vec{\mu},\ell)) + C_1(\mathbb{V}(\mathfrak{sl}_{r+1},\vec{\nu},m)). \end{split}$$

Specific example

The following bundles have rank one:

- $V(\mathfrak{sl}_4, \omega_1^4, 1));$
- $V(\mathfrak{sl}_4, \{0, (\omega_1 + \omega_3)^3\}, 2));$
- $V(\mathfrak{sl}_4, \{\omega_1, (2\omega_1 + \omega_3)^3\}, 3)$

SO

$$c_{1}V(\mathfrak{sl}_{4}, \{\omega_{1}, (2\omega_{1} + \omega_{3})^{3}\}, 3) = c_{1}V(\mathfrak{sl}_{4}, \omega_{1}^{4}, 1) + c_{1}V(\mathfrak{sl}_{4}, \{0, (\omega_{1} + \omega_{3})^{3}\}, 2)).$$
(1)

(ロ) (同) (三) (三) (三) (○) (○)

The basic open problem: What bundles give nontrivial maps?

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

The basic open problem: What bundles give nontrivial maps?

Two (equivalent) ways to say this:

- Given \mathbb{V} , is $c_1(\mathbb{V}) \neq 0$?
- Given V, can one find a curve C such that

 $c_1(\mathbb{V}) \cdot C \neq 0?$

Theorem (BGM) $c_1(\mathbb{V}(\mathfrak{sl}_{r+1}, \vec{\lambda}, \ell)) = 0$ if either 1. $\ell > -1 + \frac{1}{r+1} \sum_{i=1} |\lambda_i| = cl(\mathfrak{sl}_{r+1}, \vec{\lambda})$; or if

2. $\ell > -1 + \frac{1}{2} \sum_{i=1} \lambda_i^{(1)} = \theta(\mathfrak{sl}_{r+1}, \vec{\lambda}).$

Theorem (BGM)

$$c_1(\mathbb{V}(\mathfrak{sl}_{r+1}, \vec{\lambda}, \ell)) = 0$$
 if either
1. $\ell > -1 + \frac{1}{r+1} \sum_{i=1} |\lambda_i| = cl(\mathfrak{sl}_{r+1}, \vec{\lambda})$; or if
2. $\ell > -1 + \frac{1}{2} \sum_{i=1} \lambda_i^{(1)} = \theta(\mathfrak{sl}_{r+1}, \vec{\lambda})$.

For instance,

$$\mathcal{C}$$
 $l(\mathfrak{sl}_4, \omega_1^4) = 0, \ \ \theta(\mathfrak{sl}_4, \omega_1^4) = 1,$
hence $1 > \mathcal{C}$ $l(\mathfrak{sl}_4, \omega_1^4)$, and so
 $\mathcal{C}_1 \mathbb{V}(\mathfrak{sl}_4, \omega_1^4, 1) = 0.$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

Theorem (BGM) $c_1(\mathbb{V}(\mathfrak{sl}_2, \vec{\lambda}, \ell) \text{ is nontrivial if and only if } \mathsf{rk} \mathbb{V}(\mathfrak{sl}_2, \vec{\lambda}, \ell) > 0$ and $1 \leq \ell \leq cl(\mathfrak{sl}_2, \vec{\lambda}) = \theta(\mathfrak{sl}_2, \vec{\lambda}).$

Theorem (BGM)

 $c_1(\mathbb{V}(\mathfrak{sl}_2, \vec{\lambda}, \ell) \text{ is nontrivial if and only if } \mathsf{rk} \mathbb{V}(\mathfrak{sl}_2, \vec{\lambda}, \ell) > 0$ and $1 \leq \ell \leq cl(\mathfrak{sl}_2, \vec{\lambda}) = \theta(\mathfrak{sl}_2, \vec{\lambda}).$

But not so simple in general:

$$c_1(\mathbb{V}(\mathfrak{sl}_4, \{\omega_1, 2\omega_1 + \omega_3, 2\omega_1 + \omega_3, 2\omega_1 + \omega_3\}, 3)) = 0,$$

even though the level is below the theta and critical level, and the rank of the bundle itself is one.

When is the first Chern class nontrivial?

$$c_{1}(\mathbb{V}(\mathfrak{sl}_{r+1},\vec{\lambda},\ell)) = \sum_{i=1}^{n} c(\lambda_{i}) \operatorname{rk} \mathbb{V}(\vec{\lambda}) \psi_{i}$$
$$-\sum_{l \in [n]} \Big(\sum_{\mu} c(\mu) \operatorname{rk} \mathbb{V}(\vec{\lambda}(l) \cup \mu) \operatorname{rk} \mathbb{V}(\vec{\lambda}(l^{C}) \cup \mu *) \Big) \delta_{l}.$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ の�?

For the coefficients of the boundary classes, we sum over representations μ , such that

$$\mathsf{rk}\,\mathbb{V}(\vec{\lambda}(I)\cup\mu)=\mathsf{rk}\,\mathbb{V}(\mathfrak{sl}_{r+1},\{\lambda_j:j\in I\}\cup\mu,\ell)>0.$$
$$\mathsf{rk}\,\mathbb{V}(\vec{\lambda}(I^C)\cup\mu^*)=\mathsf{rk}\,\mathbb{V}(\mathfrak{sl}_{r+1},\{\lambda_j:j\in I^C\}\cup\mu^*,\ell)>0.$$

For
$$\lambda = \sum_{i=1^r} c_i \omega_i$$
,

$$c(\lambda) = \frac{1}{r+1} \sum_{i=1}^r (r+1-i)ic_i^2 + \frac{1}{r+1} \sum_{1 \le i < j \le r} 2(r+1-j)ic_i c_j + \sum_{i=1}^r (r+1-i)ic_i. \quad (2)$$

▲□> <□> < □> < □> < □> < □> < □</p>

Witten's Dictionary to compute $R = \operatorname{rk} \mathbb{V}(\mathfrak{sl}_{r+1}, \vec{\lambda}, \ell)$ For $\sum_{i=1}^{n} |\lambda_i| = (r+1)(\ell+s)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへぐ

Witten's Dictionary to compute $R = \operatorname{rk} \mathbb{V}(\mathfrak{sl}_{r+1}, \vec{\lambda}, \ell)$ For $\sum_{i=1}^{n} |\lambda_i| = (r+1)(\ell+s)$

• If s > 0, then let $\lambda = \ell \omega_1$. *R* is the coefficient of $q^s \sigma_{\ell \omega_{r+1}}$ in the quantum product

 $\sigma_{\lambda_1} \star \sigma_{\lambda_2} \star \cdots \star \sigma_{\lambda_n} \star \sigma_{\lambda}^s \in QH^*(Gr(r+1,r+1+\ell)).$

Witten's Dictionary to compute $R = \mathsf{rk} \mathbb{V}(\mathfrak{sl}_{r+1}, \vec{\lambda}, \ell)$ For $\sum_{i=1}^{n} |\lambda_i| = (r+1)(\ell+s)$

► If s > 0, then let $\lambda = \ell \omega_1$. *R* is the coefficient of $q^s \sigma_{\ell \omega_{r+1}}$ in the quantum product

$$\sigma_{\lambda_1} \star \sigma_{\lambda_2} \star \cdots \star \sigma_{\lambda_n} \star \sigma_{\lambda}^s \in QH^*(Gr(r+1,r+1+\ell)).$$

► If $s \leq 0$, then *R* is the multiplicity of the class of $\sigma_{k\omega_{r+1}}$ in the product

$$\sigma_{\lambda_1} \cdot \sigma_{\lambda_2} \cdot \cdots \cdot \sigma_{\lambda_n} \in H^*(\mathsf{Gr}(r+1,r+1+\ell+s)).$$

See (Theorem 3.6, Eq (3.10) and Remark 3.8) in Belkale's paper Quantum generalization of the Horn conjecture for a proof of Witten's dictionary.

Restated in the rank 1 case in terms of intersecting with some F-Curve positively

Given positive integers r and ℓ , and representations $\lambda_1, \lambda_2, \ldots, \lambda_n$ for SL(r + 1) at level ℓ , is there a partition $[n] = N_1 \cup N_2 \cup N_3 \cup N_4$ for which the following nonnegative number is strictly positive:

(ロ) (同) (三) (三) (三) (○) (○)

Restated in the rank 1 case in terms of intersecting with some F-Curve positively

Given positive integers r and ℓ , and representations $\lambda_1, \lambda_2, \ldots, \lambda_n$ for SL(r + 1) at level ℓ , is there a partition $[n] = N_1 \cup N_2 \cup N_3 \cup N_4$ for which the following nonnegative number is strictly positive:

$$\sum_{\vec{\mu}} \Big(\mathsf{rk} \, \mathbb{V}_{\vec{\mu}} \sum_{i=1}^{4} \mathcal{C}(\mu_{i}) - \sum_{\nu} \sum_{\{ijk\}=\{234\}} \mathsf{rk} \, \mathbb{V}_{\mu_{1}\mu_{i}\nu} \, \mathsf{rk} \, \mathbb{V}_{\mu_{j}\mu_{k}\nu^{*}} \Big) ?$$

Here we sum over representations $\vec{\mu} = (\mu_1, \dots, \mu_4)$, such that for each *i*

$$\mathsf{rk}\,\mathbb{V}_{\lambda(N_i)\cup\mu_i^*}=\mathsf{rk}\,\mathbb{V}(\mathfrak{sl}_{r+1},\{\lambda_j\in N_i\}\cup\mu_i^*,\ell)>0.$$

Thank you!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

There is a canonical isomorphism:

$$V(\mathfrak{sl}_{r+1},\vec{\lambda},\ell)^*_{(C,\vec{\rho})}\cong \mathsf{H}^0(X_{(C,\vec{\rho})},L_{(C,\vec{\rho})}),$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

There is a canonical isomorphism:

$$V(\mathfrak{sl}_{r+1},\vec{\lambda},\ell)^*_{(C,\vec{\rho})}\cong \mathsf{H}^0(X_{(C,\vec{\rho})},L_{(C,\vec{\rho})}),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $X_{(C,\vec{p})}$ is a projective variety and $L_{(C,\vec{p})}$ is a natural ample line bundle on it.

There is a canonical isomorphism:

$$V(\mathfrak{sl}_{r+1},\vec{\lambda},\ell)^*_{(C,\vec{\rho})}\cong \mathsf{H}^0(X_{(C,\vec{\rho})},L_{(C,\vec{\rho})}),$$

(ロ) (同) (三) (三) (三) (○) (○)

where $X_{(C,\vec{p})}$ is a projective variety and $L_{(C,\vec{p})}$ is a natural ample line bundle on it.

Beauville Laszlo 1994; Faltings 1994; Kumar, Narasimhan, Ramanathan 1994; Laszlo, Sorger 1997; Pauly 1996. There are geometric interpretations for CBs at smooth curves:

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

There are geometric interpretations for CBs at smooth curves:

$$A^{(C,\vec{\rho})}_{\bullet} = \bigoplus_{m \in \mathbb{Z}} V(\mathfrak{sl}_{r+1}, \{m\lambda_1, .., m\lambda_n\}, m\ell)^*_{(C,\vec{\rho})}$$
$$\cong \bigoplus_{m \in \mathbb{Z}} H^0(X_{(C,\vec{\rho})}, L^{\otimes m}_{(C,\vec{\rho})}), \quad (3)$$

where if $\lambda_i = \sum_{i=1} c_i \omega_i$, then

$$m\,\lambda_i=\sum_{i=1}^r m\,c_i\,\omega_i.$$

In particular,

$$\operatorname{Proj}(A^{C,\vec{p}}_{\bullet}) \cong X_{(C,\vec{p})}.$$

If C is a smooth curve of genus 2, then

$$A_{C,\vec{p}} = \bigoplus_{m \in \mathbb{Z}} V(\mathfrak{sl}_2,m)|_{[C]}^* \cong \bigoplus_{m \in \mathbb{Z}} H^0(\mathbb{P}^3,\mathcal{O}(m)).$$

In other words,

$$\operatorname{Proj}(A^{C,\vec{p}}_{\bullet})\cong \mathbb{P}^3,$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

and we say that $V(\mathfrak{sl}_2, m)|_{[C]}$ has a geometric interpretation.

Geometric interpretations do not always exist at singular curves:

Geometric interpretations do not always exist at singular curves:

For instance, if C is a singular curve of genus 2, with a separating node, then by (BGK), there is no polarized pair (X, L) such that

$$\bigoplus_{m\in\mathbb{Z}}V(\mathfrak{sl}_2,m)|_{[C]}^*\cong\bigoplus_{m\in\mathbb{Z}}\mathrm{H}^0(X,L^{\otimes m}).$$

Geometric interpretations do not always exist at singular curves:

For instance, if C is a singular curve of genus 2, with a separating node, then by (BGK), there is no polarized pair (X, L) such that

$$\bigoplus_{m\in\mathbb{Z}}V(\mathfrak{sl}_2,m)|_{[C]}^*\cong\bigoplus_{m\in\mathbb{Z}}\mathsf{H}^0(X,L^{\otimes m}).$$

Anna Kazanova will talk about this result and the fact that sometimes geometric extensions do hold at singular stable curves.

Theorem (BG) For every $r \ge 1$ and every $[C] \in \overline{M}_g$, there is an ℓ and a polarized pair (X, L) such that

$$\bigoplus_{m\in\mathbb{Z}}V(\mathfrak{sl}_{r+1},m\ell)|_{[C]}^*\cong\bigoplus_{m\in\mathbb{Z}}\mathrm{H}^0(X,L^{\otimes m}).$$

Theorem (BG) For every $r \ge 1$ and every $[C] \in \overline{M}_g$, there is an ℓ and a polarized pair (X, L) such that

$$\bigoplus_{m\in\mathbb{Z}}V(\mathfrak{sl}_{r+1},m\ell)|_{[C]}^*\cong\bigoplus_{m\in\mathbb{Z}}H^0(X,L^{\otimes m}).$$

So for example, for \mathfrak{sl}_2 , we know this works for ℓ divisible by 2.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●