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The problem I discuss today came up in joint work
with P. Belkale, and S. Mukhopadhyay. It can be
stated more generally, but I’ll focus today on the
case of conformal blocks for slr+1.



The moduli space of curves

M0,n is a smooth projective variety, whose points
correspond to stable n-pointed rational curves.

A stable n-pointed rational curve (C, ~p) is:
I A rational curve C that may have (at worst)

simple nodal singularities;
I ~p = (p1, . . . ,pn) are n smooth points on C; and
I The (n+1)-tuple (C, ~p) has finitely many

automorphisms.
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Vector bundles of conformal blocks

for slr+1 are given by:

(1) slr+1

(2) a positive integer `;
(3) ~λ = (λ1, . . . , λn), where λi =

∑r
j=1 cjωj ,

cj ≥ 0, ∀j, and
∑r

j=1 cj ≤ `.

such that

(r + 1)|
n∑

i=1

|λi |,

where |λi | =
∑r

j=1 j · cj .



Vector bundles of conformal blocks

for slr+1 are given by:

(1) slr+1

(2) a positive integer `;
(3) ~λ = (λ1, . . . , λn), where λi =

∑r
j=1 cjωj ,

cj ≥ 0, ∀j, and
∑r

j=1 cj ≤ `.

such that

(r + 1)|
n∑

i=1

|λi |,

where |λi | =
∑r

j=1 j · cj .



V (sl4, {ω1, 2ω1 + ω3, 2ω1 + ω3, 2ω1 + ω3}, 3)

Weights correspond to Young diagrams:

λ1 = ω1

λ2 = λ3 = λ4 = 2ω1 + ω3

n∑
i=1

|λi | = 1 + 3 · 5 = 16.



For g = 0 the bundles are globally generated and so
their first Chern classes, the conformal blocks divisors
c1(V) are base point free, give morphisms.

Many symmetries and identities govern aspects of
these bundles and divisors. Rank of the bundles plays
a key role.

Goals are to
I Find order in the set of all conformal blocks

divisors;
I Understand their associated maps.



Example: Additive Identities

Theorem (BGM)
Given V(slr+1, ~µ, `), of rank 1, and V(slr+1, ~ν,m), such
that rkV(slr+1, ~µ, `) = rkV(slr+1, ~µ+ ~ν, `+ m) = R,

c1(V(slr+1, ~µ+ ~ν, `+ m))

= Rc1(V(slr+1, ~µ, `)) + c1(V(slr+1, ~ν,m)).



Specific example

The following bundles have rank one:
I V (sl4, ω

4
1, 1));

I V (sl4, {0, (ω1 + ω3)
3}, 2));

I V (sl4, {ω1, (2ω1 + ω3)
3}, 3)

so

c1V (sl4, {ω1, (2ω1 + ω3)
3}, 3) =

c1V (sl4, ω
4
1, 1) + c1V (sl4, {0, (ω1 + ω3)

3}, 2)). (1)



The basic open problem: What bundles
give nontrivial maps?

Two (equivalent) ways to say this:
I Given V, is c1(V) 6= 0?
I Given V, can one find a curve C such that

c1(V) ·C 6= 0?
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Theorem (BGM)
c1(V(slr+1, ~λ, `)) = 0 if either

1. ` > −1 + 1
r+1

∑
i=1 |λi | = cl(slr+1, ~λ); or if

2. ` > −1 + 1
2

∑
i=1 λ

(1)
i = θ(slr+1, ~λ).

For instance,
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1) = 1,

hence 1 > cl(sl4, ω4
1), and so

c1V(sl4, ω4
1, 1) = 0.
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Theorem (BGM)
c1(V(sl2, ~λ, `) is nontrivial if and only if rkV(sl2, ~λ, `) > 0
and 1 ≤ ` ≤ cl(sl2, ~λ) = θ(sl2, ~λ).

But not so simple in general:

c1(V(sl4, {ω1, 2ω1 + ω3, 2ω1 + ω3, 2ω1 + ω3}, 3)) = 0,

even though the level is below the theta and critical
level, and the rank of the bundle itself is one.
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When is the first Chern class nontrivial?

c1(V(slr+1, ~λ, `)) =
n∑

i=1

c(λi) rkV(~λ) ψi

−
∑
I⊂[n]

(∑
µ

c(µ) rkV(~λ(I) ∪ µ) rkV(~λ(IC) ∪ µ∗)
)
δI .



For the coefficients of the boundary classes, we sum
over representations µ, such that

rkV(~λ(I) ∪ µ) = rkV(slr+1, {λj : j ∈ I} ∪ µ, `) > 0.

rkV(~λ(IC) ∪ µ∗) = rkV(slr+1, {λj : j ∈ IC} ∪ µ∗, `) > 0.

For λ =
∑

i=1r ciωi ,

c(λ) =
1

r + 1

r∑
i=1

(r+1−i)ic2
i +

1
r + 1

∑
1≤i<j≤r

2(r+1−j)icicj

+
r∑

i=1

(r + 1− i)ici . (2)



Witten’s Dictionary to compute
R = rkV(slr+1, ~λ, `)

For
∑n

i=1 |λi | = (r + 1)(`+ s)

I If s > 0, then let λ = `ω1. R is the coefficient of
qsσ`ωr+1 in the quantum product

σλ1 ? σλ2 ? · · · ? σλn ? σ
s
λ ∈ QH∗(Gr(r + 1, r + 1 + `)).

I If s ≤ 0, then R is the multiplicity of the class of
σkωr+1 in the product

σλ1 · σλ2 · · · · · σλn ∈ H∗(Gr(r + 1, r + 1 + `+ s)).

See [Theorem 3.6, Eq (3.10) and Remark 3.8] in
Belkale’s paper Quantum generalization of the Horn
conjecture for a proof of Witten’s dictionary.
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Restated in the rank 1 case in terms of
intersecting with some F-Curve positively

Given positive integers r and `, and representations
λ1,λ2,. . ., λn for SL(r + 1) at level `, is there a partition
[n] = N1 ∪ N2 ∪ N3 ∪ N4 for which the following
nonnegative number is strictly positive:

∑
~µ

(
rkV~µ

4∑
i=1

c(µi)−
∑
ν

∑
{ijk}={234}

rkVµ1µiν rkVµjµkν
∗

)
?

Here we sum over representations ~µ = (µ1, . . . , µ4),
such that for each i

rkVλ(Ni)∪µ∗i = rkV(slr+1, {λj ∈ Ni} ∪ µ∗i , `) > 0.
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Thank you!



If C is a smooth curve:

There is a canonical isomorphism:

V (slr+1, ~λ, `)
∗
(C,~p)

∼= H0(X(C,~p), L(C,~p)),

where X(C,~p) is a projective variety and L(C,~p) is a
natural ample line bundle on it.

Beauville Laszlo 1994;
Faltings 1994;
Kumar, Narasimhan, Ramanathan 1994;
Laszlo, Sorger 1997;
Pauly 1996.
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There are geometric interpretations for
CBs at smooth curves:

A(C,~p)
• =

⊕
m∈Z

V (slr+1, {mλ1, ..,mλn},m`)∗(C,~p)

∼=
⊕
m∈Z

H0(X(C,~p), L
⊗m
(C,~p)

), (3)

where if λi =
∑

i=1 ciωi , then

m λi =
r∑

i=1

m ci ωi .

In particular,
Proj(AC,~p

• ) ∼= X(C,~p).
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For instance:

If C is a smooth curve of genus 2, then

AC,~p =
⊕
m∈Z

V (sl2,m)|∗[C]
∼=
⊕
m∈Z

H0(P3,O(m)).

In other words,
Proj(AC,~p

• ) ∼= P3,

and we say that V (sl2,m)|[C] has a geometric
interpretation.



Geometric interpretations do not always
exist at singular curves:

For instance, if C is a singular curve of genus 2, with a
separating node, then by [BGK], there is no polarized
pair (X , L) such that⊕

m∈Z

V (sl2,m)|∗[C]
∼=
⊕
m∈Z

H0(X , L⊗m).

Anna Kazanova will talk about this result and the fact
that sometimes geometric extensions do hold at
singular stable curves.
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Theorem
(BG) For every r ≥ 1 and every [C] ∈ Mg, there is an `
and a polarized pair (X , L) such that⊕

m∈Z

V (slr+1,m`)|∗[C]
∼=
⊕
m∈Z

H0(X , L⊗m).

So for example, for sl2, we know this works for `
divisible by 2.
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